1.Loveland, P., & Webb, J. (2003). Is there a critical level of organic matter in the agricultural soils of temperate regions:
a review. Soil and Tillage Research, 70(1), 1-18. https://doi.org/https://doi. org/ 10.1016/ S0167- 1987(02) 00139-3 https://doi.org/10.1016/S0167-1987 (02) 00139-3.
2.Saidy, A. R., Smernik, R. J., Baldock, J. A., Kaiser, K., & Sanderman, J. (2013). The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide. Geoderma, 209, 15-21. https://doi.org/ https:// doi.org/ 10.1016/ j.geoderma. 2013.05.026 https://doi.org/10.1016/j. geoderma. 2013.05.026.
3.Homann, P. S., Kapchinske, J. S., & Boyce, A. (2007). Relations of mineral-soil C and N to climate and texture: regional differences within the conterminous USA. Biogeochemistry, 85(3), 303-316. https://doi.org/ https:// doi.org/ 10.1007/ s10533- 007-9139-6 https:// doi.org/ 10.1007/ s10533-007-9139-6.
4.Lorenz, K., Lal, R., & Shipitalo, M. J. (2008). Chemical stabilization of organic carbon pools in particle size fractions in no-till and meadow soils. Biology and Fertility of Soils, 44(8), 1043-1051. https://doi.org/https:// doi.org/ 10.1007/ s00374-008-0300-8 https://doi.org/ 10. 1007/s00374-008-0300-8.
5.Kalbitz, K., Schwesig, D., Rethemeyer, J., & Matzner, E. (2005). Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biology and Biochemistry, 37(7), 1319-1331. https:// doi.org/https://doi.org/10.1016/j.soilbio.2004.11.028 https:// doi.org/10. 1016/ j. soilbio.2004.11.028.
7.Jolivet, C., Arrouays, D., Leveque, J., Andreux, F., & Chenu, C. (2003). Organic carbon dynamics in soil particle‐size separates of sandy Spodosols when forest is cleared for maize cropping.
European Journal of Soil Science,
54(2), 257-268.
https://doi.org/https:// doi.org/ 10.1046/ j.1365-2389. 2003. 00541.x https://doi.org/10.1046/j.1365-2389.2003.00541.x.
8.Angst, G., Messinger, J., Greiner, M., Häusler, W., Hertel, D., Kirfel, K., Kögel-Knabner, I., Leuschner, C., Rethemeyer, J., & Mueller, C. W. (2018). Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biology and Biochemistry, 122, 19-30. https://doi. org/https://doi.org/10.1016/j.soilbio.2018.03.026 https://doi.org/10.1016/j. soilbio. 2018.03.026.
9.Saidy, A. R. (2013). Effect of coating phyllosilicate clays with hydrous oxides on organic carbon stabilisation University of Adelaide.
10.Hamarashid, N. H., Othman, M. A., & Hussain, M. A. H. (2010). Effects of soil texture on chemical compositions, microbial populations and carbon mineralization in soil. Egyptian Journal of Experimental Biology (Botany) 6(1), 59-64.
11.Kahle, M., Kleber, M., & Jahn, R. (2004). Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties. Organic Geochemistry, 35(3), 269-276. https://doi.org/https://doi.org/10. 1016/ j.orggeochem.2003.11.008 https:// doi. org/10.1016/j.orggeochem.2003.11.008.
13.Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., & Garcia-Franco, N. (2019). Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma, 333, 149-162. https://doi. org/https://doi.org/10.1016/ j.geoderma. 2018.07.026 https://doi.org/10.1016/ j.geoderma.2018.07.026.
14.Umar, S. (2010). Effect of clay on plant residue decomposition.
15.Kaiser, K., & Guggenberger, G. (2003). Mineral surfaces and soil organic matter. European Journal of Soil Science, 54(2), 219-236. https://doi.org/ https:// doi.org/ 10.1046/j.1365-2389. 2003.00544.x https://doi.org/ 10.1046/ j.1365-2389.2003.00544.x.
16.Yost, J. L., & Hartemink, A. E. (2019). Soil organic carbon in sandy soils: A review.
Advances in agronomy,
158, 217-310.
https://doi.org/ https:// doi.org/10.1016/bs.agron.2019.07.004 https://doi.org/10.1016/bs.agron.2019.07.004.
17.Tahir, S., & Marschner, P. (2017). Clay addition to sandy soil-influence of clay type and size on nutrient availability in sandy soils amended with residues differing in C/N ratio.
Pedosphere,
27(2), 293-305.
https://doi.org/ https:// doi.org/10.1016/S1002-0160(17)60317-5 https://doi.org/10.1016/S1002-0160 (17)60317-5.
18.Vranova, V., Rejsek, K., & Formanek, P. (2013). Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review. The Scientific World Journal, 2013. https://doi.org/https://doi.org/10.1155%2F2013%2F524239 https://doi.org/ 10.1155%2F2013%2F524239.
19.Chen, H., He, X., Rong, X., Chen, W., Cai, P., Liang, W., Li, S., & Huang, Q. (2009). Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite. Applied Clay Science, 46(1), 102-108. https://doi.org/ https:// doi.org/ 10.1016/ j.clay.2009.07.006 https://doi.org/10.1016/j.clay.2009.07.006.
20.Gmach, M. R., Cherubin, M. R., Kaiser, K., & Cerri, C. E. P. (2019). Processes that influence dissolved organic matter in the soil: a review.
Scientia Agricola,
77, e20180164.
https://doi.org/ http:// dx.doi.org/ 10.1590/ 1678-992X-2018-0164 http://dx.doi.org/10.1590/1678-992X-2018-0164.
21.Besse-Hoggan, P., Alekseeva, T., Sancelme, M., Delort, A. M., & Forano, C. (2009). Atrazine biodegradation modulated by clays and clay/humic acid complexes. Environmental Pollution, 157(10), 2837-2844. https://doi.org/ https://doi.org/10.1016/ j.envpol.2009. 04.005 https://doi.org/10.1016/ j.envpol. 2009.04.005.
22.Chevallier, T., Muchaonyerwa, P., & Chenu, C. (2003). Microbial utilisation of two proteins adsorbed to a vertisol clay fraction: toxin from Bacillus thuringiensis subsp. tenebrionis and bovine serum albumin. Soil Biology and Biochemistry, 35(9), 1211-1218. https:// doi.org/https://doi.org/10.1016/S0038-0717(03) 00182-2 https://doi.org/ 10. 1016/S0038-0717(03)00182-2.
23.Cai, P., He, X., Xue, A., Chen, H., Huang, Q., Yu, J., Rong, X., & Liang, W. (2011). Bioavailability of methyl parathion adsorbed on clay minerals and iron oxide.
Journal of Hazardous Materials,
185(2-3), 1032-1036.
https:// doi.org/ https:// doi.org/ 10.1016/ j.jhazmat.2010.10.010 https://doi.org/ 10. 1016/j.jhazmat.2010.10.010.
24.Kaiser, K., & Guggenberger, G. (2007). Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation.
European Journal of Soil Science,
58(1), 45-59.
https://doi.org/https:// doi.org/ 10.1111/ j.1365-2389.2006. 00799.x https://doi.org/10.1111/j.1365-2389.2006.00799.x.
25.Fomina, M., & Skorochod, I. (2020). Microbial interaction with clay minerals and its environmental and biotechnological implications. Minerals, 10(10), 861. https://doi.org/https:// doi.org/10.3390/min10100861 https:// doi.org/10.3390/min10100861.
26.Ve, N. B., Olk, D., & Cassman, K. G. (2004). Characterization of humic acid fractions improves estimates of nitrogen mineralization kinetics for lowland rice soils. Soil Science Society of America Journal, 68(4), 1266-1277. https:// doi. org/https:// doi.org/10.2136/ sssaj2004. 1266 https://doi.org/10.2136/sssaj2004. 1266.
27.Wang, Q. K., & Wang, S. L. (2007). Soil organic matter under different forest types in Southern China.
Geoderma,
142(3-4), 349-356.
https://doi.org/ https://doi.org/ 10.1016/j.geoderma. 2007. 09.006 https://doi.org/10.1016/ j.geoderma.2007.09.006.
28.Rakhsh, F., Golchin, A., Al Agha, A. B., & Alamdari, P. (2017). Effects of exchangeable cations, mineralogy and clay content on the mineralization
of plant residue carbon. Geoderma,
307, 150-158. https://doi.org/ https:// doi.org/10.1016/j.geoderma.2017.07.010 https:// doi.org/ 10.1016/j.geoderma. 2017.07.010.
29.Rakhsh, F., & Golchin, A. (2018). Carbohydrate concentrations and enzyme activities as influenced by exchangeable cations, mineralogy and clay content. Applied Clay Science,
163, 214-226. https://doi.org/https:// doi.org/ 10.1016/ j.clay. 2018. 07.031 https:// doi.org/ 10.1016/j.clay. 2018. 07.031.
30.Galicia-Andrés, E., Escalona, Y., Oostenbrink, C., Tunega, D., & Gerzabek, M. H. (2021). Soil organic matter stabilization at molecular scale: The role of metal cations and hydrogen bonds. Geoderma, 401, 115237. https:// doi.org/ http:// dx.doi.org/10.1016/ j. geoderma. 2021.115237 http://dx.doi. org/ 10.1016/j.geoderma.2021.115237.
31.Denef, K., Six, J., Merckx, R., & Paustian, K. (2004). Carbon sequestration in microaggregates of no-tillage soils with different clay mineralogy.
Soil Science Society of America Journal,
68(6), 1935-1944.
https://doi.org/ https://doi.org/10.2136/sssaj2004.1935 https://doi.org/10.2136/sssaj2004.1935.
32.Kaiser, K., Eusterhues, K., Rumpel, C., Guggenberger, G., & Kögel‐Knabner, I. (2002). Stabilization of organic matter by soil minerals-investigations of density and particle‐size fractions from two acid forest soils. Journal of Plant Nutrition and Soil Science, 165(4), 451-459. https://doi.org/https://doi.org/10.1002/1522-2624(200208) 165:4% 3C451:: AID-JPLN451%3E3.0.CO;2-B https:// doi.org/ 10.1002/1522-2624(200208) 165:4%3C451::AID-JPLN451%3E3. 0.CO;2-B.
33.Babin, D., Ding, G. C., Pronk, G. J., Heister, K., Kögel-Knabner, I., & Smalla, K. (2013). Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene.
FEMS Microbiology Ecology,
86(1), 3-14.
https://doi.org/https://doi.org/10.1111/1574-6941.12058 https:// doi.org/ 10. 1111/1574-6941.12058.
34.Guenet, B., Leloup, J., Hartmann, C., Barot, S., & Abbadie, L. (2011). A new protocol for an artificial soil to analyse soil microbiological processes. Applied Soil Ecology, 48(2), 243-246. https:// doi.org/https://doi.org/10.1016/j.apsoil.2011.04.002 https://doi.org/10. 1016/ j.apsoil.2011.04.002.
36.Rhoades, J. D. (1982). Cation Exchange Capacity. In Methods of Soil
Analysis, Part 2. Chemical and Microbiological Properties. American Society of Agronomy.
37.Macht, F., Eusterhues, K., Pronk, G. J., & Totsche, K. U. (2011). Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and-liquid (EGME) adsorption methods.
Applied Clay Science,
53(1), 20-26.
https://doi.org/https:// doi.org/ 10.1016/ j.clay.2011.04.006 https://doi.org/10.1016/j.clay.2011.04.006.
38.Chorom, M., & Rengasamy, P. (1995). Dispersion and zeta potential of
pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type.
European Journal of Soil Science,
46(4), 657-665.
https://doi.org/https://doi.org/10.1111/j.1365-2389.1995.tb01362.x https:// doi. org/10.1111/j.1365-2389.1995. tb 01362.x.
39.Rayment, G. E., & Lyons, D. J. (2011). Soil Chemical Methods (Vol. 3). CSIRO Publishing.
40.Ulery, A. L., & Drees, L. R. (2008). Methods of Soil Analysis: Mineralogical Methods (Vol. 5). Soil Science Society of America. https://books.google.com/ books?id=Lqh6mYoKjdQC.
41.Jackson, M. L. (2005). Soil Chemical Analysis, Advanced Course. UW-Madison Libraries Parallel Press.
42.Yoder, L. (1919). Adaptation of the Mohr Volumetric Method to
General Determinations of Chlorine. Industrial and Engineering Chemistry, 11(8), 755-755. https://doi.org/https:// doi.org/10.1021/ie50116a013 https:// doi.org/10.1021/ie50116a013.
43.Vogel, C., Babin, D., Pronk, G. J., Heister, K., Smalla, K., & Kögel-Knabner, I. (2014). Establishment of macro-aggregates and organic matter turnover by microbial communities in long-term incubated artificial soils.
Soil Biology and Biochemistry,
79, 57-67.
https://doi.org/https://doi.org/10.1016/j.soilbio.2014.07.012 https://doi.org/ 10. 1016/j.soilbio.2014.07.012.
44.Vogel, C., Heister, K., Buegger, F., Tanuwidjaja, I., Haug, S., Schloter, M., & Kögel-Knabner, I. (2015). Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions.
Biology and Fertility of Soils,
51(4), 427-442.
https://doi.org/https:// doi.org/ 10.1007/ s00374-014-0987-7 https:// doi.org/10.1007/s00374-014-0987-7.
45.Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
46.Carter, M. R., & Gregorich, E. G. (2007). Soil Sampling and Methods of Analysis (2 ed.). CRC Press. https:// books.google.com/books?id=UyAXmAEACAAJ.
47.Klute, A. (1986). Water Retention: Laboratory Methods. In Methods of Soil Analysis: part 1-Physical and Mineralogical Methods (2 ed., pp. 635-662). Soil Science Society of America, American Society of Agronomy.
48.Alef, K., & Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Academic Press.
49.Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703-707. https://doi.org/ https:// doi.org/10.1016/0038-0717(87)90052-6 https://doi.org/10.1016/0038-0717 (87) 90052-6.
50.Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (2012). Methods in Soil Biology. Springer Berlin Heidelberg. https:// books.google.com/books?id= RJXzCAAAQBAJ.
51.Martens, D. A., & Frankenberger, W. T. (1991). Determination of saccharides in biological materials by high-performance anion-exchange chromatography with pulsed amperometric detection.
Journal of Chromatography A,
546, 297-309.
https://doi.org/https://doi.org/10.1016/s0021-9673(01)93027-4 https:// doi. org/10.1016/s0021-9673(01)93027-4.
52.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances.
Analytical Chemistry,
28(3), 350-356.
https://doi.org/https://doi.org/10.1021/ac60111a017 https://doi.org/10. 1021/ ac60111a017.
53.von Lützow, M., Kögel‐Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review.
European Journal of Soil Science,
57(4), 426-445.
https://doi.org/ https:// doi.org/ 10.1111/ j.1365-2389. 2006. 00809.x https://doi.org/10.1111/j.1365-2389.2006.00809.x.
54.Sharmistha, P., & Marschner, P. (2016). Soil respiration, microbial biomass C and N availability in a sandy soil amended with clay and residue mixtures. Pedosphere, 26(5), 643-651. https:// doi.org/https://doi.org/10.1016/S1002-0160(15) 60073-X https://doi.org/ 10. 1016/S1002-0160(15)60073-X.
55.Mikutta, R., Kleber, M., Torn, M. S., & Jahn, R. (2006). Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry, 77(1), 25-56. https:// doi.org/https://doi.org/10.1007/s10533-005-0712-6 https://doi.org/10.1007/ s 10533-005-0712-6.
56.Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J., & Vitousek, P. M. (2012). Long‐term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Global Change Biology, 18(8), 2594-2605. https://doi.org/ https://doi.org/ 10.1111/ j.1365-2486. 2012.02681.x https://doi.org/ 10. 1111/ j.1365-2486.2012.02681.x.
57.Sollins, P., Kramer, M. G., Swanston, C., Lajtha, K., Filley, T., Aufdenkampe, A. K., Wagai, R., & Bowden, R. D. (2009). Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial-and mineral- controlled soil organic matter stabilization.
Biogeochemistry,
96(1-3), 209-231.
https://doi.org/https://doi.org/10.1007/s10533-009-9359-z https://doi.org/ 10. 1007/s10533-009-9359-z.
58.Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I., & Schulze, E. D. (2013). Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals.
Biogeosciences,
10, 1675-1691.
https://doi.org/https://doi.org/10.5194/bg-10-1675-2013 https://doi.org/ 10. 5194/bg-10-1675-2013.
59.Saidy, A. R., Smernik, R. J., Baldock,
J. A., Kaiser, K., Sanderman, J., & Macdonald, L. M. (2012). Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma, 173, 104-110. https://doi. org/ https://doi.org/10.1016/ j.geoderma. 2011.12.030 https://doi.org/10. 1016/ j.geoderma.2011.12.030.
60.Schweizer, S. A., Mueller, C. W., Höschen, C., Ivanov, P., & Kögel-Knabner, I. (2021). The role of clay content and mineral surface area for
soil organic carbon storage in an
arable toposequence. Biogeochemistry, 156(3), 401-420. https://doi.org/ https:// doi.org/10.1007/ s10533-021-00850-3 https://doi.org/10.1007/ s10533- 021-00850-3.
61.Rakhsh, F., Golchin, A., Al Agha, A. B., & Nelson, P. N. (2020). Mineralization of organic carbon and formation of microbial biomass in soil: Effects of clay content and composition and the mechanisms involved. Soil Biology and Biochemistry, 151, 108036. https://doi. org/https:// doi.org/10.1016/ j.soilbio. 2020.108036 https://doi.org/10.1016/j. soilbio.2020.108036.
62.Wattel-Koekkoek, E. J. W., Van Genuchten, P. P. L., Buurman, P., & Van Lagen, B. (2001). Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils. Geoderma,
99(1-2), 27-49. https://doi.org/ https:// doi.org/10.1016/S0016-7061(00)00062-8 https://doi.org/10.1016/S0016-7061 (00)00062-8.
63.Doni, S., Gispert, M., Peruzzi, E., Macci, C., Mattii, G. B., Manzi, D., Masini, C. M., & Grazia, M. (2021). Impact of natural zeolite on chemical and biochemical properties of vineyard soils. Soil Use and Management,
37(4), 832-842. https://doi.org/https:// doi.org/ 10.1111/ sum.12665 https:// doi.org/ 10.1111/ sum.12665.
64.Filcheva, E., & Chakalov, K. (2002). Soil Fertility Management with Zeolite Amendments. I. Effect of Zeolite on Carbon Sequestration. In J. M. Kimble, R. Lal, & R. F. Follett (Eds.), Agricultural Practices and Policies for Carbon Sequestration in Soil (1 ed., pp. 223-228). Boca Raton, CRC Press.
65.Capasso, S., Salvestrini, S., Coppola, E., Buondonno, A., & Colella, C. (2005). Sorption of humic acid on zeolitic tuff: a preliminary investigation. Applied Clay Science, 28(1-4), 159-165. https:// doi. org/ https:// doi.org/ 10.1016/j.clay. 2004.01.010 https://doi.org/10. 1016/ j.clay.2004.01.010.
66.Naylor, D., McClure, R., & Jansson, J. (2022). Trends in microbial community composition and function by soil
depth. Microorganisms, 10(3), 540. https://doi.org/https://doi.org/10.3390/ microorganisms10030540 https:// doi. org/10.3390/microorganisms 10030540.
67.Golchin, A., Clarke, P., & Oades, J. (1996). The heterogeneous nature of microbial products as shown by solid-state 13 C CP/MAS NMR spectroscopy. Biogeochemistry, 34, 71-97. https:// doi.org/https://doi.org/10.1007/BF02180974 https://doi.org/ 10.1007/ BF02 180974.
68.Usharani, K., Roopashree, K., & Naik, D. (2019). Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. Journal of Pharmacognosy and Phytochemistry, 8(5), 1256-1267.
69.Vance, G. F., Stevenson, F. J., & Sikora, F. J. (2020). Environmental chemistry of aluminum–organic complexes. In The environmental chemistry of aluminum (pp. 169-220). CRC Press.
70.Wu, X., Ren, L., Luo, L., Zhang, J., Zhang, L., & Huang, H. (2020). Bacterial and fungal community dynamics and shaping factors during agricultural waste composting with zeolite and biochar addition.
Sustainability,
12(17), 7082.
https://doi. org/https://doi.org/10.3390/su12177082 https://doi.org/10.3390/su12177082.
71.Shahbaz, M., Kuzyakov, Y., & Heitkamp, F. (2017). Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls. Geoderma, 304, 76-82. https:// doi.org/ https:// doi.org/ 10.1016/ j. geoderma.2016.05.019 https://doi. org/ 10.1016/j.geoderma.2016.05.019.
72.Theng, B. (2012). Polysaccharides. In Developments in clay science (Vol. 4, pp. 351-390). Elsevier.
73.Walshire, L. A., Zhang, H., Nick, Z. H., Breland, B. R., Runge, K. A., & Han, F. X. (2024). Modification of Surface Properties of Clay Minerals with Exopolysaccharides from Rhizobium Tropici. ACS Earth and Space Chemistry, 8(1), 137-147. https://doi.org/https:// doi.org/ 10.1021/ acsearthspacechem.
3c00296 https:// doi.org/ 10.1021/ acsearthspacechem.3c00296.
74.Meimaroglou, N., & Mouzakis, C. (2019). Cation Exchange Capacity (CEC), texture, consistency and organic matter in soil assessment for earth construction: The case of earth mortars. Construction and Building Materials, 221, 27-39. https://doi.org/https://doi. org/10.1016/j.conbuildmat.2019.06.036 https://doi.org/10.1016/ j. conbuildmat. 2019.06.036.
75.Grandy, A. S., Strickland, M. S., Lauber, C. L., Bradford, M. A., & Fierer, N. (2009). The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma, 150(3-4), 278-286. https:// doi.org/ https:// doi.org/10.1016/ j. geoderma.2009.02.007 https://doi.org/ 10.1016/j.geoderma.2009.02.007.
78.Welty-Bernard, A. T. (2014). Al, Fe, and pH effects on soil microbial communities Northern Arizona University.
79.Rousk, J., Brookes, P. C., & Baath, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75(6), 1589-1596. https://doi.org/https://doi.org/10.1128/AEM.02775-08 https://doi.org/ 10. 1128/AEM.02775-08.