تأثیر مقادیر مختلف ورمی‌کولیت و زئولیت و نوع کاتیون‌های تبادلی بر نگهداشت کربن آلی خاک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دکتری علوم خاک، گروه علوم خاک، دانشگاه زنجان، ایران

2 استاد، گروه علوم و مهندسی خاک، دانشگاه زنجان، زنجان، ایران

3 دانشیار، گروه علوم و مهندسی خاک، دانشگاه رازی، کرمانشاه، ایران

چکیده

سابقه و هدف: رس‌ها تأثیر زیادی بر دینامیک ماده آلی در خاک دارند و با کاهش سرعت تجزیه مواد آلی باعث افزایش نگهداشت آن در خاک می‌شوند. رس‌ها، با تشکیل کمپلکس‌های پایدار با ماده آلی و غیرفعال کردن آنزیم‌های خارج یاخته‌ای، از مواد آلی در برابر تخریب میکروبی محافظت می‌کنند. به‌عنوان یک عامل غیر زیستی، مقدار رس بر سرعت تجزیه میکروبی و مقدار مواد آلی خاک تأثیر می‌گذارد. اثرات بافت خاک بر دینامیک مواد آلی خاک در پژوهش‌های بسیاری بررسی شده است. با این حال، تحقیقاتی که تأثیر نوع رس را نشان دهد کم است و اثرات کاتیون‌های تبادلی بر نگهداشت کربن آلی خاک ناشناخته است. این پژوهش با هدف درک بهتر تأثیر نوع و مقدار ورمی‌کولیت و زئولیت و نوع کاتیون تبادلی بر دینامیک کربن آلی انجام شد.
مواد و روش‌ها: برای این منظور یک آزمایش به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی و در سه تکرار اجرا گردید. فاکتورهای آزمایش شامل دو نوع رس (ورمی‌کولیت و زئولیت)، چهار سطح رس (صفر، 15، 30 و 45 درصد) و سه نوع کاتیون تبادلی (سدیم، کلسیم و آلومینیوم) بود. برای انجام آزمایش‌، از مخلوط‌های شن و رس (خاک مصنوعی) استفاده گردید. برای تهیه رس‌هایی با کاتیون تبادلی یکسان، ورمی‌کولیت و زئولیت با محلول‌های یک مولار از نمک‌های NaCl، CaCl2 و AlCl3 به‌طور جداگانه تیمار شدند. پیش از انکوباسیون نمونه‌ها و پس از افزودن بقایای یونجه استریل به خاک‌های مصنوعی استریل، نمونه‌ها با استفاده از عصاره استخراج شده از یک خاک طبیعی مایه‌زنی شدند. نمونه‌های 50 گرمی با توجه به مقدار و نوع رس و نوع کاتیون تبادلی، به‌صورت جداگانه تهیه شدند. سپس به تمامی نمونه‌ها به میزان 5 درصد وزنی بقایای گیاهی یونجه اضافه شد. پس از افزودن عصاره خاک و هوا خشک کردن نمونه‌ها، دوباره رطوبت نمونه‌ها با استفاده از آب مقطر به 60 درصد ظرفیت مزرعه رسید و به مدت 180 روز و در دمای 25 درجه سلسیوس در تاریکی انکوباسیون شدند. در خاک‌های مصنوعی تهیه شده، معدنی شدن کربن آلی، مقدار زیست‌توده میکروبی و غلظت کربوهیدرات‌ها در خاک اندازه‌گیری شدند.
یافته‌ها: نتایج آزمایش نشان دهنده تأثیر معنی‌دار (01/0 > p) نوع و مقدار رس خاک و نوع کاتیون تبادلی بر معدنی شدن کربن آلی، مقدار زیست‌توده میکروبی و غلظت کربوهیدرات‌ها در خاک بودند. معدنی شدن کربن آلی در شن خالص بیشتر از خاک‌های با 15، 30 و 45 درصد رس بود. در خاک‌های با ورمی‌کولیت معدنی شدن کربن آلی بیشتر از خاک‌هایی با زئولیت بود. مقدار کربن زیست‌توده میکروبی نیز در خاک‌هایی با ورمی‌کولیت بیشتر از خاک‌هایی با زئولیت بود. بیشترین درصد کربن معدنی شده و مقدار کربن زیست‌توده میکروبی در خاک‌های با کاتیون تبادلی کلسیم و بیشترین غلظت کربوهیدرات‌ها در خاک‌های با کاتیون تبادلی آلومینیوم اندازه‌گیری شدند.
نتیجه‌گیری: نتایج این پژوهش نشان داد که ماده آلی و زیست‌توده میکروبی از طریق برهمکنش با رس‌ها در خاک غیرقابل تجزیه شده و مقادیر کم رس، قادر به کاهش تجزیه ماده آلی و انتشار دی‌اکسید کربن از خاک‌ها می‌باشد. همچنین کاتیون‌های تبادلی با تأثیر بر زیست‌توده میکروبی و کنترل اندازه و فعالیت ریزجانداران و تغییر ویژگی‌های فیزیکوشیمیایی محیط رشد آن‌ها بر دینامیک کربن آلی تأثیرگذار هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of different contents of vermiculite and zeolite and the type of exchangeable cations on soil organic carbon retention

نویسندگان [English]

  • Fatemeh Rakhsh 1
  • Ahmad Golchin 2
  • Ali Beheshti Ale Agha 3
1 Soil Science Department, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
2 Professor, Dept. of Soil Science, University of Zanjan
3 Department of Soil Science, Razi University, Kermanshah, Iran.
چکیده [English]

Background and Objectives: Soil clays are recognized as essential soil minerals for organic matter stabilization. Clays have a significant influence on soil organic matter dynamics. Clays, forming clay-organic matter stable complexes and deactivating extracellular enzymes, protect organic matter against microbial degradation in soils with high clay content. As an abiotic factor, the amount of clays affects the microbial decomposition rate of organic materials and the size of soil organic matter pools. The effects of soil texture on soil organic matter dynamics have been investigated in many studies. Still, research showing the effects of clay type is rare, and the impacts of exchangeable cations in these regards are unknown. This research was conducted to understand better the effect of the type and amount of soil clays and the type of exchangeable cation on organic carbon retention.

Materials and Methods: Materials and Methods: Consequently, this work experiment was carried out to understand better the clay type, content, and exchangeable cations on soil organic carbon retention. Different clays (vermiculite and zeolite) were saturated with Na, Ca, and Al cations to prepare homoionic Na-, Ca-, and Al-clays of different clay mineralogy. Then, the homoionic clays of different clay mineralogy were mixed with pure sand in different ratios to obtain artificial soils with varying types of clay and contents and exchangeable cations. Alfalfa plant residues were incorporated into the artificial soils, and the soils were inoculated with microbes from natural soil and incubated in the dark at a temperature of 25 °C for six months. The factorial experiments, each with three replications and completely randomized designs (CRD), were used to assess the effects of clay type and content and exchangeable cations on organic carbon dynamics. The experiment consisted of two types of clays (vermiculite and zeolite), four clay contents (zero, 15, 30, and 45%), and three exchangeable cations (Na, Ca, and Al).

Results: This study showed the significant effects (p < 0.01) of clay type and content and exchangeable cations on the mineralization of organic carbon, microbial biomass, and concentrations of carbohydrates in the soil. Organic carbon mineralization was higher in pure sand than in soils containing 15%, 30%, and 45% clays. Organic carbon mineralization was higher in soils with vermiculite than in soils with zeolite. The highest percentages of mineralized carbon and microbial biomass carbon were measured in soils with Ca, and soils with Al had the highest concentrations of carbohydrates.

Conclusion: The results of this study indicate that organic matter and microbial biomass are stabilized in soils through interaction with clays, and a small amount of clays slows organic matter decomposition significantly and reduces carbon dioxide emission from soils. Exchangeable cations influence microbial biomass and carbon dynamics by controlling the microbial population's size and activity by modifying microbial habitats' physicochemical characteristics.

کلیدواژه‌ها [English]

  • Aluminum
  • Clay
  • Sodium
  • Organic matter
  • Mineralization
1.Loveland, P., & Webb, J. (2003). Is there a critical level of organic matter in the agricultural soils of temperate regions:
a review. Soil and Tillage Research, 70(1), 1-18. https://doi.org/https://doi. org/ 10.1016/ S0167- 1987(02) 00139-3 https://doi.org/10.1016/S0167-1987 (02) 00139-3.
2.Saidy, A. R., Smernik, R. J., Baldock, J. A., Kaiser, K., & Sanderman, J. (2013). The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide. Geoderma, 209, 15-21. https://doi.org/ https:// doi.org/ 10.1016/ j.geoderma. 2013.05.026 https://doi.org/10.1016/j. geoderma. 2013.05.026.
3.Homann, P. S., Kapchinske, J. S., & Boyce, A. (2007). Relations of mineral-soil C and N to climate and texture: regional differences within the conterminous USA. Biogeochemistry, 85(3), 303-316. https://doi.org/ https:// doi.org/ 10.1007/ s10533- 007-9139-6 https:// doi.org/ 10.1007/ s10533-007-9139-6.
4.Lorenz, K., Lal, R., & Shipitalo, M. J. (2008). Chemical stabilization of organic carbon pools in particle size fractions in no-till and meadow soils. Biology and Fertility of Soils, 44(8), 1043-1051. https://doi.org/https:// doi.org/ 10.1007/ s00374-008-0300-8 https://doi.org/ 10. 1007/s00374-008-0300-8.
5.Kalbitz, K., Schwesig, D., Rethemeyer, J., & Matzner, E. (2005). Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biology and Biochemistry, 37(7), 1319-1331. https:// doi.org/https://doi.org/10.1016/j.soilbio.2004.11.028 https:// doi.org/10. 1016/ j. soilbio.2004.11.028.
6.Ludwig, B., Helfrich, M., & Flessa, H. (2005). Modelling the long-term stabilization of carbon from maize in a silty soil. Plant and Soil, 278(1-2), 315-325. https://doi.org/https://doi.org/10.1007/s11104-005-8808-2 https://doi. org/10. 1007/s11104-005-8808-2.
7.Jolivet, C., Arrouays, D., Leveque, J., Andreux, F., & Chenu, C. (2003). Organic carbon dynamics in soil particle‐size separates of sandy Spodosols when forest is cleared for maize cropping. European Journal of Soil Science,
54(2), 257-268. https://doi.org/https:// doi.org/ 10.1046/ j.1365-2389. 2003. 00541.x https://doi.org/10.1046/j.1365-2389.2003.00541.x.
8.Angst, G., Messinger, J., Greiner, M., Häusler, W., Hertel, D., Kirfel, K., Kögel-Knabner, I., Leuschner, C., Rethemeyer, J., & Mueller, C. W. (2018). Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biology and Biochemistry, 122, 19-30. https://doi. org/https://doi.org/10.1016/j.soilbio.2018.03.026 https://doi.org/10.1016/j. soilbio. 2018.03.026.
9.Saidy, A. R. (2013). Effect of coating phyllosilicate clays with hydrous oxides on organic carbon stabilisation University of Adelaide.
10.Hamarashid, N. H., Othman, M. A., & Hussain, M. A. H. (2010). Effects of soil texture on chemical compositions, microbial populations and carbon mineralization in soil. Egyptian Journal of Experimental Biology (Botany) 6(1), 59-64.
11.Kahle, M., Kleber, M., & Jahn, R. (2004). Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties. Organic Geochemistry, 35(3), 269-276. https://doi.org/https://doi.org/10. 1016/ j.orggeochem.2003.11.008 https:// doi. org/10.1016/j.orggeochem.2003.11.008.
12.Murphy, B. (2015). Impact of soil organic matter on soil properties-a review with emphasis on Australian soils. Soil Research, 53(6), 605-635. https://doi.org/https://doi.org/10.1071/SR14246 https:// doi.org/ 10.1071/ SR14246.
13.Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., & Garcia-Franco, N. (2019). Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma, 333, 149-162. https://doi. org/https://doi.org/10.1016/ j.geoderma. 2018.07.026 https://doi.org/10.1016/ j.geoderma.2018.07.026.
14.Umar, S. (2010). Effect of clay on plant residue decomposition.
15.Kaiser, K., & Guggenberger, G. (2003). Mineral surfaces and soil organic matter. European Journal of Soil Science, 54(2), 219-236. https://doi.org/ https:// doi.org/ 10.1046/j.1365-2389. 2003.00544.x https://doi.org/ 10.1046/ j.1365-2389.2003.00544.x.
16.Yost, J. L., & Hartemink, A. E. (2019). Soil organic carbon in sandy soils: A review. Advances in agronomy, 158, 217-310. https://doi.org/ https:// doi.org/10.1016/bs.agron.2019.07.004 https://doi.org/10.1016/bs.agron.2019.07.004.
17.Tahir, S., & Marschner, P. (2017). Clay addition to sandy soil-influence of clay type and size on nutrient availability in sandy soils amended with residues differing in C/N ratio. Pedosphere, 27(2), 293-305. https://doi.org/ https:// doi.org/10.1016/S1002-0160(17)60317-5 https://doi.org/10.1016/S1002-0160 (17)60317-5.
18.Vranova, V., Rejsek, K., & Formanek, P. (2013). Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review. The Scientific World Journal, 2013. https://doi.org/https://doi.org/10.1155%2F2013%2F524239 https://doi.org/ 10.1155%2F2013%2F524239.
19.Chen, H., He, X., Rong, X., Chen, W., Cai, P., Liang, W., Li, S., & Huang, Q. (2009). Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite. Applied Clay Science, 46(1), 102-108. https://doi.org/ https:// doi.org/ 10.1016/ j.clay.2009.07.006 https://doi.org/10.1016/j.clay.2009.07.006.
20.Gmach, M. R., Cherubin, M. R., Kaiser, K., & Cerri, C. E. P. (2019). Processes that influence dissolved organic matter in the soil: a review. Scientia Agricola, 77, e20180164. https://doi.org/ http:// dx.doi.org/ 10.1590/ 1678-992X-2018-0164 http://dx.doi.org/10.1590/1678-992X-2018-0164.
21.Besse-Hoggan, P., Alekseeva, T., Sancelme, M., Delort, A. M., & Forano, C. (2009). Atrazine biodegradation modulated by clays and clay/humic acid complexes. Environmental Pollution, 157(10), 2837-2844. https://doi.org/ https://doi.org/10.1016/ j.envpol.2009. 04.005 https://doi.org/10.1016/ j.envpol. 2009.04.005.
22.Chevallier, T., Muchaonyerwa, P., & Chenu, C. (2003). Microbial utilisation of two proteins adsorbed to a vertisol clay fraction: toxin from Bacillus thuringiensis subsp. tenebrionis and bovine serum albumin. Soil Biology and Biochemistry, 35(9), 1211-1218. https:// doi.org/https://doi.org/10.1016/S0038-0717(03) 00182-2 https://doi.org/ 10. 1016/S0038-0717(03)00182-2.
23.Cai, P., He, X., Xue, A., Chen, H., Huang, Q., Yu, J., Rong, X., & Liang, W. (2011). Bioavailability of methyl parathion adsorbed on clay minerals and iron oxide. Journal of Hazardous Materials, 185(2-3), 1032-1036. https:// doi.org/ https:// doi.org/ 10.1016/ j.jhazmat.2010.10.010 https://doi.org/ 10. 1016/j.jhazmat.2010.10.010.
24.Kaiser, K., & Guggenberger, G. (2007). Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation. European Journal of Soil Science,
58(1), 45-59. https://doi.org/https:// doi.org/ 10.1111/ j.1365-2389.2006. 00799.x https://doi.org/10.1111/j.1365-2389.2006.00799.x.
25.Fomina, M., & Skorochod, I. (2020). Microbial interaction with clay minerals and its environmental and biotechnological implications. Minerals, 10(10), 861. https://doi.org/https:// doi.org/10.3390/min10100861 https:// doi.org/10.3390/min10100861.
26.Ve, N. B., Olk, D., & Cassman, K. G. (2004). Characterization of humic acid fractions improves estimates of nitrogen mineralization kinetics for lowland rice soils. Soil Science Society of America Journal, 68(4), 1266-1277. https:// doi. org/https:// doi.org/10.2136/ sssaj2004. 1266 https://doi.org/10.2136/sssaj2004. 1266.
27.Wang, Q. K., & Wang, S. L. (2007). Soil organic matter under different forest types in Southern China. Geoderma, 142(3-4), 349-356. https://doi.org/ https://doi.org/ 10.1016/j.geoderma. 2007. 09.006 https://doi.org/10.1016/ j.geoderma.2007.09.006.
28.Rakhsh, F., Golchin, A., Al Agha, A. B., & Alamdari, P. (2017). Effects of exchangeable cations, mineralogy and clay content on the mineralization
of plant residue carbon. Geoderma,
307, 150-158. https://doi.org/ https:// doi.org/10.1016/j.geoderma.2017.07.010 https:// doi.org/ 10.1016/j.geoderma. 2017.07.010.
29.Rakhsh, F., & Golchin, A. (2018). Carbohydrate concentrations and enzyme activities as influenced by exchangeable cations, mineralogy and clay content. Applied Clay Science,
163, 214-226. https://doi.org/https:// doi.org/ 10.1016/ j.clay. 2018. 07.031 https:// doi.org/ 10.1016/j.clay. 2018. 07.031.
30.Galicia-Andrés, E., Escalona, Y., Oostenbrink, C., Tunega, D., & Gerzabek, M. H. (2021). Soil organic matter stabilization at molecular scale: The role of metal cations and hydrogen bonds. Geoderma, 401, 115237. https:// doi.org/ http:// dx.doi.org/10.1016/ j. geoderma. 2021.115237 http://dx.doi. org/ 10.1016/j.geoderma.2021.115237.
31.Denef, K., Six, J., Merckx, R., & Paustian, K. (2004). Carbon sequestration in microaggregates of no-tillage soils with different clay mineralogy. Soil Science Society of America Journal, 68(6), 1935-1944. https://doi.org/ https://doi.org/10.2136/sssaj2004.1935 https://doi.org/10.2136/sssaj2004.1935.
32.Kaiser, K., Eusterhues, K., Rumpel, C., Guggenberger, G., & Kögel‐Knabner, I. (2002). Stabilization of organic matter by soil minerals-investigations of density and particle‐size fractions from two acid forest soils. Journal of Plant Nutrition and Soil Science, 165(4), 451-459. https://doi.org/https://doi.org/10.1002/1522-2624(200208) 165:4% 3C451:: AID-JPLN451%3E3.0.CO;2-B https:// doi.org/ 10.1002/1522-2624(200208) 165:4%3C451::AID-JPLN451%3E3. 0.CO;2-B.
33.Babin, D., Ding, G. C., Pronk, G. J., Heister, K., Kögel-Knabner, I., & Smalla, K. (2013). Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene. FEMS Microbiology Ecology, 86(1), 3-14. https://doi.org/https://doi.org/10.1111/1574-6941.12058 https:// doi.org/ 10. 1111/1574-6941.12058.
34.Guenet, B., Leloup, J., Hartmann, C., Barot, S., & Abbadie, L. (2011). A new protocol for an artificial soil to analyse soil microbiological processes. Applied Soil Ecology, 48(2), 243-246. https:// doi.org/https://doi.org/10.1016/j.apsoil.2011.04.002 https://doi.org/10. 1016/ j.apsoil.2011.04.002.
35.Pronk, G. J., Heister, K., & Kögel-Knabner, I. (2013). Is turnover and development of organic matter controlled by mineral composition? Soil Biology and Biochemistry, 67, 235-244. https://doi.org/https://doi.org/10.1016/j.soilbio.2013.09.006 https://doi.org/ 10.1016/j.soilbio.2013.09.006.
36.Rhoades, J. D. (1982). Cation Exchange Capacity. In Methods of Soil
Analysis, Part 2. Chemical and Microbiological Properties. American Society of Agronomy.
37.Macht, F., Eusterhues, K., Pronk, G. J., & Totsche, K. U. (2011). Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and-liquid (EGME) adsorption methods. Applied Clay Science,
53(1), 20-26. https://doi.org/https:// doi.org/ 10.1016/ j.clay.2011.04.006 https://doi.org/10.1016/j.clay.2011.04.006.
38.Chorom, M., & Rengasamy, P. (1995). Dispersion and zeta potential of
pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. European Journal of Soil Science, 46(4), 657-665. https://doi.org/https://doi.org/10.1111/j.1365-2389.1995.tb01362.x https:// doi. org/10.1111/j.1365-2389.1995. tb 01362.x.
39.Rayment, G. E., & Lyons, D. J. (2011). Soil Chemical Methods (Vol. 3). CSIRO Publishing.
40.Ulery, A. L., & Drees, L. R. (2008). Methods of Soil Analysis: Mineralogical Methods (Vol. 5). Soil Science Society of America. https://books.google.com/ books?id=Lqh6mYoKjdQC.
41.Jackson, M. L. (2005). Soil Chemical Analysis, Advanced Course. UW-Madison Libraries Parallel Press.
42.Yoder, L. (1919). Adaptation of the Mohr Volumetric Method to
General Determinations of Chlorine. Industrial and Engineering Chemistry, 11(8), 755-755. https://doi.org/https:// doi.org/10.1021/ie50116a013 https:// doi.org/10.1021/ie50116a013.
43.Vogel, C., Babin, D., Pronk, G. J., Heister, K., Smalla, K., & Kögel-Knabner, I. (2014). Establishment of macro-aggregates and organic matter turnover by microbial communities in long-term incubated artificial soils. Soil Biology and Biochemistry, 79, 57-67. https://doi.org/https://doi.org/10.1016/j.soilbio.2014.07.012 https://doi.org/ 10. 1016/j.soilbio.2014.07.012.
 
44.Vogel, C., Heister, K., Buegger, F., Tanuwidjaja, I., Haug, S., Schloter, M., & Kögel-Knabner, I. (2015). Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions. Biology and Fertility of Soils, 51(4), 427-442. https://doi.org/https:// doi.org/ 10.1007/ s00374-014-0987-7 https:// doi.org/10.1007/s00374-014-0987-7.
45.Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
46.Carter, M. R., & Gregorich, E. G. (2007). Soil Sampling and Methods of Analysis (2 ed.). CRC Press. https:// books.google.com/books?id=UyAXmAEACAAJ.
47.Klute, A. (1986). Water Retention: Laboratory Methods. In Methods of Soil Analysis: part 1-Physical and Mineralogical Methods (2 ed., pp. 635-662). Soil Science Society of America, American Society of Agronomy.
48.Alef, K., & Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Academic Press.
49.Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703-707. https://doi.org/ https:// doi.org/10.1016/0038-0717(87)90052-6 https://doi.org/10.1016/0038-0717 (87) 90052-6.
50.Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (2012). Methods in Soil Biology. Springer Berlin Heidelberg. https:// books.google.com/books?id= RJXzCAAAQBAJ.
51.Martens, D. A., & Frankenberger, W. T. (1991). Determination of saccharides in biological materials by high-performance anion-exchange chromatography with pulsed amperometric detection. Journal of Chromatography A, 546, 297-309. https://doi.org/https://doi.org/10.1016/s0021-9673(01)93027-4 https:// doi. org/10.1016/s0021-9673(01)93027-4.
52.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/https://doi.org/10.1021/ac60111a017 https://doi.org/10. 1021/ ac60111a017.
53.von Lützow, M., Kögel‐Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review. European Journal of Soil Science,
57(4), 426-445. https://doi.org/ https:// doi.org/ 10.1111/ j.1365-2389. 2006. 00809.x https://doi.org/10.1111/j.1365-2389.2006.00809.x.
54.Sharmistha, P., & Marschner, P. (2016). Soil respiration, microbial biomass C and N availability in a sandy soil amended with clay and residue mixtures. Pedosphere, 26(5), 643-651. https:// doi.org/https://doi.org/10.1016/S1002-0160(15) 60073-X https://doi.org/ 10. 1016/S1002-0160(15)60073-X.
55.Mikutta, R., Kleber, M., Torn, M. S., & Jahn, R. (2006). Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry, 77(1), 25-56. https:// doi.org/https://doi.org/10.1007/s10533-005-0712-6 https://doi.org/10.1007/ s 10533-005-0712-6.
56.Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J., & Vitousek, P. M. (2012). Long‐term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Global Change Biology, 18(8), 2594-2605. https://doi.org/ https://doi.org/ 10.1111/ j.1365-2486. 2012.02681.x https://doi.org/ 10. 1111/ j.1365-2486.2012.02681.x.
 
57.Sollins, P., Kramer, M. G., Swanston, C., Lajtha, K., Filley, T., Aufdenkampe, A. K., Wagai, R., & Bowden, R. D. (2009). Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial-and mineral- controlled soil organic matter stabilization. Biogeochemistry, 96(1-3), 209-231. https://doi.org/https://doi.org/10.1007/s10533-009-9359-z https://doi.org/ 10. 1007/s10533-009-9359-z.
58.Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I., & Schulze, E. D. (2013). Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences, 10, 1675-1691. https://doi.org/https://doi.org/10.5194/bg-10-1675-2013 https://doi.org/ 10. 5194/bg-10-1675-2013.
59.Saidy, A. R., Smernik, R. J., Baldock,
J. A., Kaiser, K., Sanderman, J., & Macdonald, L. M. (2012). Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma, 173, 104-110. https://doi. org/ https://doi.org/10.1016/ j.geoderma. 2011.12.030 https://doi.org/10. 1016/ j.geoderma.2011.12.030.
60.Schweizer, S. A., Mueller, C. W., Höschen, C., Ivanov, P., & Kögel-Knabner, I. (2021). The role of clay content and mineral surface area for
soil organic carbon storage in an
arable toposequence. Biogeochemistry, 156(3), 401-420. https://doi.org/ https:// doi.org/10.1007/ s10533-021-00850-3 https://doi.org/10.1007/ s10533- 021-00850-3.
61.Rakhsh, F., Golchin, A., Al Agha, A. B., & Nelson, P. N. (2020). Mineralization of organic carbon and formation of microbial biomass in soil: Effects of clay content and composition and the mechanisms involved. Soil Biology and Biochemistry, 151, 108036. https://doi. org/https:// doi.org/10.1016/ j.soilbio. 2020.108036 https://doi.org/10.1016/j. soilbio.2020.108036.
62.Wattel-Koekkoek, E. J. W., Van Genuchten, P. P. L., Buurman, P., & Van Lagen, B. (2001). Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils. Geoderma,
99(1-2), 27-49. https://doi.org/ https:// doi.org/10.1016/S0016-7061(00)00062-8 https://doi.org/10.1016/S0016-7061 (00)00062-8.
63.Doni, S., Gispert, M., Peruzzi, E., Macci, C., Mattii, G. B., Manzi, D., Masini, C. M., & Grazia, M. (2021). Impact of natural zeolite on chemical and biochemical properties of vineyard soils. Soil Use and Management,
37(4), 832-842. https://doi.org/https:// doi.org/ 10.1111/ sum.12665 https:// doi.org/ 10.1111/ sum.12665.
64.Filcheva, E., & Chakalov, K. (2002). Soil Fertility Management with Zeolite Amendments. I. Effect of Zeolite on Carbon Sequestration. In J. M. Kimble, R. Lal, & R. F. Follett (Eds.), Agricultural Practices and Policies for Carbon Sequestration in Soil (1 ed., pp. 223-228). Boca Raton, CRC Press.
65.Capasso, S., Salvestrini, S., Coppola, E., Buondonno, A., & Colella, C. (2005). Sorption of humic acid on zeolitic tuff: a preliminary investigation. Applied Clay Science, 28(1-4), 159-165. https:// doi. org/ https:// doi.org/ 10.1016/j.clay. 2004.01.010 https://doi.org/10. 1016/ j.clay.2004.01.010.
66.Naylor, D., McClure, R., & Jansson, J. (2022). Trends in microbial community composition and function by soil
depth. Microorganisms, 10(3), 540. https://doi.org/https://doi.org/10.3390/ microorganisms10030540 https:// doi. org/10.3390/microorganisms 10030540.
67.Golchin, A., Clarke, P., & Oades, J. (1996). The heterogeneous nature of microbial products as shown by solid-state 13 C CP/MAS NMR spectroscopy. Biogeochemistry, 34, 71-97. https:// doi.org/https://doi.org/10.1007/BF02180974 https://doi.org/ 10.1007/ BF02 180974.
68.Usharani, K., Roopashree, K., & Naik, D. (2019). Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. Journal of Pharmacognosy and Phytochemistry, 8(5), 1256-1267.
69.Vance, G. F., Stevenson, F. J., & Sikora, F. J. (2020). Environmental chemistry of aluminum–organic complexes. In The environmental chemistry of aluminum (pp. 169-220). CRC Press.
70.Wu, X., Ren, L., Luo, L., Zhang, J., Zhang, L., & Huang, H. (2020). Bacterial and fungal community dynamics and shaping factors during agricultural waste composting with zeolite and biochar addition. Sustainability, 12(17), 7082. https://doi. org/https://doi.org/10.3390/su12177082 https://doi.org/10.3390/su12177082.
71.Shahbaz, M., Kuzyakov, Y., & Heitkamp, F. (2017). Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls. Geoderma, 304, 76-82. https:// doi.org/ https:// doi.org/ 10.1016/ j. geoderma.2016.05.019 https://doi. org/ 10.1016/j.geoderma.2016.05.019.
72.Theng, B. (2012). Polysaccharides. In Developments in clay science (Vol. 4, pp. 351-390). Elsevier.
73.Walshire, L. A., Zhang, H., Nick, Z. H., Breland, B. R., Runge, K. A., & Han, F. X. (2024). Modification of Surface Properties of Clay Minerals with Exopolysaccharides from Rhizobium Tropici. ACS Earth and Space Chemistry, 8(1), 137-147. https://doi.org/https:// doi.org/ 10.1021/ acsearthspacechem.
3c00296 https:// doi.org/ 10.1021/ acsearthspacechem.3c00296.
74.Meimaroglou, N., & Mouzakis, C. (2019). Cation Exchange Capacity (CEC), texture, consistency and organic matter in soil assessment for earth construction: The case of earth mortars. Construction and Building Materials, 221, 27-39. https://doi.org/https://doi. org/10.1016/j.conbuildmat.2019.06.036 https://doi.org/10.1016/ j. conbuildmat. 2019.06.036.
75.Grandy, A. S., Strickland, M. S., Lauber, C. L., Bradford, M. A., & Fierer, N. (2009). The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma, 150(3-4), 278-286. https:// doi.org/ https:// doi.org/10.1016/ j. geoderma.2009.02.007 https://doi.org/ 10.1016/j.geoderma.2009.02.007.
76.Feng, W., Plante, A. F., & Six, J. (2013). Improving estimates of maximal organic carbon stabilization by fine soil particles. Biogeochemistry, 112(1-3), 81-93. https://doi.org/https://doi.org/10.1007/s10533-011-9679-7 https://doi.org/ 10. 1007/s10533-011-9679-7.
77.Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: an update. Journal of Chemical Biology, 6(4), 185-205. https://doi.org/https://doi.org/10.1007%2Fs12154-013-0102-9 https://doi. org/ 10.1007%2Fs12154-013-0102-9.
78.Welty-Bernard, A. T. (2014). Al, Fe, and pH effects on soil microbial communities Northern Arizona University.
79.Rousk, J., Brookes, P. C., & Baath, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75(6), 1589-1596. https://doi.org/https://doi.org/10.1128/AEM.02775-08 https://doi.org/ 10. 1128/AEM.02775-08.