اولویت‌بندی ویژگی‌های فیزیکوشیمیایی لایه‌های سطحی و زیرسطحی خاک برای مدیریت خاک‌های شورسدیمی بر اساس فرآیند تحلیل سلسله‌مراتبی فازی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسنده

دانشیار، گروه مهندسی طبیعت، دانشکده کشاورزی، دانشگاه فسا، فسا، ایران.

چکیده

سابقه و هدف: خاک به عنوان یکی از اجزای مهم محیط زیست و محل رشد، نمو و نگهداری گیاهان، بر کیفیت و عملکرد گیاهان و محیط زیست تاثیر می‌گذارد و با تغییر در ویژگی‌های خاک این موضوع تغییر خواهد کرد. بنابراین مطالعه و اولویت‌بندی ویژگی‌های خاک باید مورد توجه قرار گیرد. در مواقعی که نیاز به بررسی و اولویت‌بندی گزینه‌ای از بین گزینه‌های مختلف باشد، تعیین وزن‌های استاندارد برای انتخاب صحیح و دقیق ضروری است. یکی از روش‌های مناسبی که امکان تعیین وزن‌ها را فراهم می‌کند، فرآیند تحلیل سلسله مراتبی است. با توجه به ماهیت مبهم پدیده‌ها و فرآیندهای مربوط به خاک، استفاده از سامانه‌های مبتنی بر قوانین فازی در حال توسعه است. با توجه به گستردگی خاک‌های شور و سدیمی در کشور و لزوم مدیریت صحیح آنها، اولویت‌بندی و یافتن مهم‌ترین ویژگی‌های خاک بسیار ضروری است. بنابراین، پژوهش حاضر با هدف تعیین میزان تأثیر ویژگی‌های فیزیکی و شیمیایی لایه‌های سطحی و زیرسطحی خاک‌های شور و سدیمی با استفاده از فرآیند تحلیل سلسله مراتبی فازی انجام شد.
مواد و روش‌ها: نمونه‌های خاک سطحی و عمقی شامل مجموعه‌ای از خاک‌های شور-سدیمی و نرمال واقع در 21 کیلومتری جنوب غربی شهرستان سروستان، استان فارس، در فواصل معین جمع‌آوری و ویژگی‌های فیزیکی و شیمیایی مهم آن‌ها اندازه‌گیری شد. به منظور اولویت‌بندی ویژگی‌های فیزیکی و شیمیایی خاک از روش تحلیل سلسله مراتبی فازی استفاده شد. برای تعیین تاثیرگذارترین ویژگی خاک، سه سطح شامل هدف مسئله، ویژگی‌های شیمیایی و فیزیکی خاک لایه سطحی و لایه زیرسطحی تعریف شد. پرسشنامه‌ها و مقایسه‌های زوجی توسط کارشناسان تکمیل شد. ابتدا بین معیارهای اصلی در رسیدن به هدف و مقایسه زیرمعیارهای هر معیار مقایسه انجام شد. سپس با وزن‌دهی به معیارها و زیرمعیارها و مقایسه درصد تأثیرگذاری هر یک، اهمیت ویژگی‌ها مشخص شد.
یافته‌ها: حداقل و حداکثر میزان ناهماهنگی محاسبه‌شده با روش‌های ماتریس میانه و هندسی به ترتیب 013/0 و 099/0 بود. بنابراین مقایسه‌های انجام شده در این پژوهش از همسانی قابل‌قبولی برخوردار بودند. در بین تمامی معیارهای مورد مطالعه، ویژگی‌های شیمیایی لایه سطحی از نظر اهمیت در رتبه اول، ویژگی‌های فیزیکی لایه سطحی در رتبه دوم، ویژگی‌های شیمیایی لایه زیرسطحی رتبه سوم و ویژگی‌های فیزیکی لایه زیرسطحی در رتبه چهارم اولویت و اهمیت قرار گرفتند. از بین تمامی زیرمعیارها، بیشترین درصد تأثیر (97/18 درصد) مربوط به ماده آلی خاک و کمترین درصد (2/0 درصد) مربوط به سیلت بود.
نتیجه‌گیری: به‌طور کلی نتایج نشان داد که بر اساس فرآیند تحلیل سلسله مراتبی فازی به‌منظور مدیریت بهتر خاک‌های شور و سدیمی مورد مطالعه، اولویت با ویژگی‌های شیمیایی خاک به ویژه درصد مواد آلی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prioritization of surface and subsurface physicochemical characteristics for the management of saline-sodic soils based on the fuzzy analytic hierarchical process

نویسنده [English]

  • Maryam Zahedifar
Corresponding Author, Associate Prof., Dept. of Range and Watershed Management (Nature Engineering), Faculty of Agriculture, University of Fasa, Fasa, Iran
چکیده [English]

Background and objectives: Soil, as one of the important components of the environment and a place for the growth, development, and maintenance of plants, affects its quality and performance, and this issue will change with changes in soil properties. Therefore, their study and prioritization should be considered. When there is a need to review and prioritize an option among different options, it is necessary to determine standard weights to make a correct and accurate choice. One of the appropriate methods that allows the determination of weights is the analysis hierarchical process. Due to the ambiguous nature of the phenomena and processes related to the soil, the use of systems based on fuzzy laws is developing. Considering the extent of saline and sodic soils in the country and the need for their proper management, it is very necessary to prioritize and find the most important soil properties. Therefore, the current research was carried out to determine the degree of influence of the physical and chemical properties of the surface and subsurface saline and sodic soils using the fuzzy analytical hierarchy process.
Materials and methods: Surface and subsurface soil samples including a collection of saline-sodic and normal soils located 21 km southwest of Sarvestan City, Fars province, were collected regularly. Their important physical and chemical properties were measured. To prioritize the physical and chemical properties of the soil, the fuzzy analysis hierarchy method was used. To determine the most influential soil characteristics, 3 levels were defined including the objective of the problem, the chemical and physical properties of the surface and subsurface soil. Questionnaires and pairwise comparisons were completed by experts. First, comparisons were made between the main criteria in reaching the goal, and the comparison of the sub-criteria of each criterion. Then, by weighting the criteria and sub-criteria and comparing the percentage of influence of each, the importance of the features was determined.
Results: The minimum and maximum inconsistency rates calculated by the median and geometric matrix methods were 0.013 and 0.099, respectively. Therefore, the comparisons made in this research had an acceptable consistency. Among all the criteria studied, surface chemical properties were ranked first in importance, surface physical properties were ranked second, subsurface chemical properties were ranked third, and subsurface physical properties were ranked fourth in priority and importance. Among all the sub-criteria, the most important and influential percentage (18.97%) was related to soil organic matter, and the lowest percentage (0.2%) was obtained for silt.
Conclusion: The overall results showed that based on the fuzzy hierarchical analysis process; in order to better manage the studied saline and sodic soils, priority is given to the soil chemical properties, especially the percentage of organic matter.

کلیدواژه‌ها [English]

  • Saline and sodic soil
  • Fuzzy analytical hierarchy process
  • Pairwise comparison matrix
  • Consistency ratio
  1. Bouman, B.A., Barker, R., Humphreys, E., Tuong, T.P., Atlin, G., Bennett, J. & Fujimoto, N. (2007). Rice: feeding the billions (No. 612-2016-40554)
  2. Trong Duc, T. (2006). Using GIS and AHP Technique for Land-use Suitability Analysis. International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, pp. 6.
  3. Gass, S. & Rapcsák, T. (2004). Singular value decomposition in AHP. European Journal of Operational Research. 154(3), 573-584. doi: 10.1016/S0377-2217(02)00755-5
  4. Wang, T.C. & Chen, Y.H. (2007). Applying consistent fuzzy preference relations to partnership selection. International Journal of Management Science. 35, 384-388. doi: 10.1016/j.omega.2005.07.007
  5. Sepehr, A., Ekhtesasi, M. R. & Almodaresi, S. A. (2011). Development of Desertification Indicator System Base on DPSIR (Take advantages of Fuzzy-TOPSIS). Geography and Environmental Planning Journal. 45(1), 9-11 [In Persian].
  6. Chang, D.Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research. 95(3), 649-655. doi: 10.1016/0377-2217(95)00300-2
  7. Haidaraa, I., Tahrib, M., Maananc M. & Hakdaouia, M. (2019). Efficiency of Fuzzy Analytic Hierarchy Process to detect soil erosion vulnerability. Geoderma. 354, 1-15. doi: 10.1016/j.geoderma.2019.07.011
  8. Saaty, T. L. (1980). The Analytical Hierarchy Process. McGraw Hill, New York.
  9. Ghodsipour, S.H. 2006. Introduction of multi criteria decisions and Analysis Hierarchical Process (AHP). Amir Kabir University Publications. 220 p [In Persian].
  10. Metternicht, G. & Gonzalez, S. (2004). Modelling land cover changes: Fuzzy thresholding for the separation of change from no-change areas. International Journal of Ecology and Environmental Sciences. 30, 351 – 362. doi:10.1016/j.landurbplan.2011.01.009
  11. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–353. doi: 10.1016/S0019-9958(65)90241-X
  12. Zahedifar, M. (2023). Feasibility of fuzzy analytical hierarchy process (FAHP) and fuzzy TOPSIS methods to assess the most sensitive soil attributes against land use change. Environmental Earth Science. 82, 248. doi: 10.1007/s12665-023-10934-y
  13. Rezaee, L., Moosavi, A. A., Davatgar, N., & Sepaskhah, A. R. (2020). Soil quality indices of paddy soils in Guilan province of northern Iran: Spatial variability and their influential parameters. Ecological Indicators. 117, 106566. doi: 10.1016/j.ecolind.2020.106566
  14. Aama Azghadi, A., Khorassani, R., Mokarram, R. & Moezi, A. (2010). Soil fertility evaluation based on soil K, P and organic matter factors for wheat by using fuzzy logic-AHP and GIS techniques. Journal of Water and Soil. 24(5), 973-984. doi: 10.22067/jsw. V 0i0.6242. [In Persian]
  15. Liu, Z., Zhou W., Shen, J., He, P., Lei, Q. & Liang, G. (2014). A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields south China. Geoderma. 235, 39-47. doi: 10.1016/j.geoderma.2014.06.027
  16. Saito, K., Linquist, B., Atlin, G.N., Phanthaboon, K., Shirawa, T. & Horie, T. (2006). Response of traditional and improved upland rice cultivars to N and P fertilizer in northern Laos. Field Crops Research. 96, 216-223. doi: 10.1016/j.fcr.2005.07.003
  17. Zhang, B., Zhang, Y., Chen, D., White, R. E., & Li, Y. (2004). A quantitative evaluation system of soil productivity for intensive agriculture in China. Geoderma. 123(3-4), 319-331. doi: org/ 10. 1016/j. geode rma. 2004. 02. 015
  18. Fayyaz, H., Yaghmaeian, N., Sabouri, A., & Shirinfekr, A. (2021). Assessing soil fertility index using Fuzzy-AHP and parametric methods for tea cultivation with different productivities. Agricultural Engineering. 44(3), 275-294. doi: 10.22055/agen.2021.38284.1613. [In Persian].
  19. Kweon, G. (2012). Delineation of site-specific productivity zones using soil properties and topographic attributes with a fuzzy logic system. Biosystems engineering. 112(4), 261-277. doi: 10.1016/j. biosy stems eng. 2012. 04. 009
  20. Tuncay, T., Kılıc, Ş., Dedeoğlu, M., Dengiz, O., Başkan, O., & Bayramin, İ. (2021). Assessing soil fertility index based on remote sensing and gis techniques with field validation in a semiarid agricultural ecosystem. Journal of Arid Environment. 190, 104525
  21. Duru, N., Dokmen, F., Mucella Canbay, M., & Kurtuluş, C. (2010). Soil productivity analysis based on a fuzzy logic system. Journal of the Science of Food and Agriculture. 90(13), 2220-2227. doi:10.1002/jsfa.4074
  22. Mawale, M. V., & Chavan, V. (2024). Implementation & Simulation of Fuzzy Logic Controllers for Productivity and Fertility of Soil and Performance Evaluation of Triangular Membership Function. COMPUSOFT: An International Journal of Advanced Computer Technology, 3(09), 1098–1102.
  23. Mallick, K., Sahana, M., & Chatterjee, S. (2022). Comparing Delphifuzzy AHP and fuzzy logic membership in soil fertility assessment: a study of an active Ganga Delta in Sundarban Biosphere Reserve, India. Environmental Science and Pollution Research. 30(5), 1-27. doi: 10.1007/s11356-022-21983-4
  24. Nabavi, S. F., Yaghmaeian Mahabadi, N., & MahmoudSoltani, S. (2021). Assessment of Soil Fertility Using Fuzzy Membership Functions and AHP in Paddy Fields (Case Study: Research Fields Goldasht, Amol). Iranian Journal of Soil and Water Research, 52(1), 109-122. doi: 10.22059/ijswr.2020.308462.668707 [In Persian].
  25. Dengiz, O., Ozyazici, M.A. & Saglam, M. (2015). Multi-criteria assessment and geostatistical approach for determination of rice growing suitability sites in Gokirmak catchment. Paddy and Water Environment. 13(1), 1-10. doi: 10.1007/s10333-013-0400-4
  26. Keykha, E., Fakhireh, A., Rouhani, H. & Behmanesh, B. (2021). Locating of planting project using Analytic Hierarchy Process and Fuzzy logic (Case study: Maravehtappe watershed, Golestan province). Journal of Plant Ecosystem Conservation. 8 (17), 19-40 [In Persian].
  27. Vahidi, M. (2020). Land Suitability Evaluation for Barberry and Jujube Using Parametric Method and Analytical Hierarchy Process in Alghoorat Region of Birjand. Iranian Journal of Soil and Water Research. 51(10), 2665-2680. doi: 10.22059/ijswr.2020.305789.668663 [In Persian].
  28. Arthur, E., Razzaghi, F. & Moosavi, A. A. (2017). Validation of water sorption-based clay prediction models for calcareous soils. Journal of Plant Nutrition and Soil Science. 180, 347–354. doi: 10.1002/jpln.201700001
  29. Zahedifar, M., Dehghani, S., Moosavi, A. A. & Gavili, E. (2017). Temporal variation of total and DTPA-extractable heavy metal contents as influenced by sewage sludge and perlite in a calcareous soil. Archive of Agronomy and Soil Science. 63, 136–149. doi: 10.1080/03650340.2016.1193164
  30. Ertugrul, I., & Karakasoglu, N. (2008). Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. International Journal of Advanced Manufacturing Technology, 39(7–8), 783-795. doi: 10.1007/s00170-007-1249-8
  31. Kilic, O. M., Ersayın, K., Gunal, H., Khalofah, A., & Alsubeie, M. S. (2022). Combination of fuzzy-AHP and GIS techniques in land suitability assessment for wheat (Triticum aestivum) cultivation. Saudi Journal of Biological Sciences. 29, 2634-2644. doi: 10.1016/j.sjbs.2021.12.050
  32. Tofan, A. S., & Breesam, H. K. (2018). Using the Fuzzy-AHP technique for determining the key performance indicators of public construction companies in Iraq. International Journal of Civil Engineering and Technology. 9(13), 1431-1445.
  33. Saaty, T. L. (2000). Fundamentals of Decision Making and Priority Theory (2nd ed.). Pittsburgh, PA: RWS Publications.
  34. Goodarzi, A. & Dokht, H. A. (2015). Measuring the Relative Importance of Financial Ratios: An Integrated Approach of Fuzzy DEMATEL and Fuzzy ANP. International Business Management, 11(3), 81-95. doi: 10.3968/7626
  35. Sener, E. & Davraz, A. (2013). Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrology Journal, 21, 701-714. doi: 10.1007/s10040-012-0947-y
  36. Haq, A. N. & Kannan, G. (2006). Fuzzy analytical hierarchy process for evaluating and selecting a vendor in a supply chain model. International Journal of Advanced Manufacturing Technology. 29, 826–835. doi: 10.1007/s00170-005-2562-8
  37. Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233-247.

38. Sarmadian, F., & Keshavarzi, A. (2013). An Investigation of Fuzzy Set Theory's Efficiency in Land Suitability Assessment for Irrigated Wheat in Qazvin Province, Using Analytic Hierarchy Process (AHP) and Multivariate Regression Methods. Iranian Journal of Soil and Water Research42(2), 199-207. doi: 10.22059/ijswr.2012.24348

39. Erhart, E., Hartl, W. and Putz, B. 2005. Biowaste compost affects yield, nitrogen supply during the vegetation period and crop quality of agricultural crops. European Journal of Agronomy, 23(3): 305-314. doi: 10.1016/j.eja.2005.01.002

  1. Sing, M. & Sherma, S.N. (2000). Effect of wheat residue management practices and nitrogen rate on productivity and nutrient uptake of rice (Oryza sativa)-wheat (Triticum aestivum) cropping system. The Indian Journal of Agricultural Sciences. 70, 835-839
  2. Mousavi, S. A., Sarmadian, F., & Taati, A. (2017). Comparison of AHP and FAO Methods for Land Suitability Evaluation of Rainfed Wheat in Kuhin Area. Iranian Journal of Soil Research. 30(4), 367-377. doi: 10.22092/ijsr.2017.109256. [In Persian].
  3. Panah-Nezhad, V., Ahmadi Sani, N., & Javanmard, A. (2022). Spatial multi-criteria analysis of ecological land suitability for irrigated farming. Journal of Agroecology. 14(2), 219-233. doi: 10.22067/agry.2021.20290.0 [In Persian].
  4. Tashayo, B., Honarbakhsh, A., Azma, A. & Akbari, M. (2020). Combined fuzzy AHP–GIS for agricultural land suitability modeling for a watershed in southern Iran. Environmental Management. 66(3), 364-376. doi: 10.1007/s00267-020-01310-8
  5. Sadegh Zadeh, F., Hassantabar, S., Bahmanyar, M. & Jalili, B. (2018). Reclamation of saline- sodic soil with Clay texture using Dissolved Organic Carbon. Journal of Soil Management and Sustainable Production, 8(1), 159-174. doi: 10.22069/ejsms.2018.13846.1769.
  6. Gavili, E., Moosavi, A.A., & Moradi Choghamarani, F. (2018). Cattle manure biochar potential for ameliorating soil physical characteristics and spinach response under drought. Archives of Agronomy and Soil Science. 64, 1714-1727. doi: 10.1080/03650340.2018.1453925.
  7. Gavili, E., Moosavi, A.A., & Zahedifar, M. (2019). Integrated effects of cattle manure-derived biochar and soil moisture conditions on soil chemical characteristics and soybean yield. Archives of Agronomy and Soil Science. 65, 1758-1774. doi: 10.1080/03650340.2019.1576864

 

  1. Chaganti, V.N., Crohn, D.M., & Simunek, J. (2015). Leaching and reclamation of a biochar and compost amended saline- sodic soil with moderate SAR reclaimed water. Agricultural Water Management. 158, 255-265. doi: 10.1016/j.agwat.2015.05.016
  2. Roy, S., & Abul Kashem, M. (2014). Effects of organic manures in changes of some soil properties at different incubation periods. Open Journal of Soil Science. 4, 81-86. doi: 10.4236/ojss.2014.43011
  3. Tejeda, M., Garcia, C., Gonzalez, J.L., & Hernandez, M.T. (2006). Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biology and Biochemistry. 38, 1413-1421. doi: 10.1016/j.soilbio.2005.10.017
  4. Mahmoodabadi, M., Yazdanpanah, N., Sinobas, L.R., Pazira, E., & Neshat, A. (2013). Reclamation of calcareous saline- sodic soil with different amendments: Redistribution of soluble cations within the soil profile. Agricultural Water Management. 120, 30-38. doi: 10.1016/j.agwat.2012.08.018.