1.Babaeean, E., and Jalali, V.R. 2016. Estimating Soil Organic Carbon Using Hyperspectral
Data in Visible, Near-infrared and Shortwave-infrared (VIS-NIR-SWIR) Range. J. Soil
Manage. Sust. Prod. 6: 2. 65-82. (In Persian)
2.Babaeian, E., Homaee, M., Montzka, C., Vereecken, H., Norouzi, A.A., and van Genuchten,
M.Th. 2016. Soil moisture prediction of bare soil profiles using diffuse spectral reflectance
information and vadose zone flow modeling. Remote Sensing of Environment. 187: 218-229.
3.Babaeian, E., Homaee, M., Montzka, C., Vereecken, H., and Norouzi, A.A. 2015. Towards
retrieving soil hydraulic properties by hyperspectral remote sensing. Vadose zone J. 14: 3. 1-17.
4.Babaeian, E., Homaee, M., and Norouzi, A.A. 2014. Deriving and validating parametric
spectrotransfer functions for estimating soil hydraulic properties in VIS-NIR-SWIR range.
J. Water Soil Resour. Cons. 3: 3. 21-36. (In Persian)
5.Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Advanced Soil
Science. 9: 177-213.
6.Bray, J.G.P., Viscarra Rossel, R.A., and McBratney, A.B. 2009. Diagnostic scree using
diffuse reflectance spectroscopy. Aust. J. Soil Res. 47: 433-442.
7.Cambou, A., Cardinael, R., Kouakoua, E., Villeneuve, M., Durand, C., and Barthès, B.G.
2016. Prediction of soil organic carbon stock using visible and near infrared reflectance
spectroscopy (VNIRS) in the field. Geoderma. 261: 151-159.
8.Cécile, C., Viscarra Rossel, R.A., and McBratney, A.B. 2008. Soil organic carbon prediction
by hyperspectral remote sensing and field Vis-NIR spectroscopy: An Australian case study.
Geoderma. 146: 3-4. 40-41.
9.Choe, E., Kim, K.W., Bang, S., Yoon, I.H., and Lee, K.Y. 2008. Qualitative analysis and
mapping of heavy metals in an abandoned Au-Ag mine area using NIR spectroscopy.
Environ. Geol. 58: 477-482.
10.Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., and Vergo, N. 1990. High spectral
resolution reflectance spectroscopy of minerals. Geophysic. Res. J. 95: 12653-12680.
11.DuBose, P., and Klimasauskas, C. 1989. Introduction to Neural Networks with Examples
and Applications. NeuralWare Inc., Pittsburgh, 317p.
12.Esmaeelnejad, L., Ramezanpour, H., Seyedmohammadi, J., and Shabanpour, M. 2015.
Selection of a suitable model for the prediction of soil water content in north of Iran. Spanish
J. Agric. Res. 13: 1. 12-20.
13.Garavand, M., Ghasemi, H., and Hafezi Moghddas, N. 2013. Geochemical and
Environmental Assessment of the Heavy Metals in the Soils Derived from the Gorgan
Schists. Sci. Quar. J. Geosci. 22: 86. 35-46. (In Persian)
14.Gholizadeh, A., Boruvka, L., Saberioon, M.M., and Vasat, R. 2013. Visible, near-infrared,
and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic
matter content and quality: State-of-the-art and key issues. Appl Spectrosc. 67: 1349-1362.
15.Gomez, C., Lagacherie, P., and Coulouma, G. 2008. Continuum removal versus PLSR
method for clay and calcium carbonate content estimation from laboratory and airborne
hyperspectral measurements. Geoderma. 148: 2. 141-148.
16.Hseu, Z.Y. 2004. Evaluating heavy metal contents in nine composts using four digestion
methods. Bioresource Technology. 95: 53-59.
17.Jalali, V., Asadi Kapourchal, S., and Homaee, M. 2017. Evaluating performance of
macroscopic water uptake models at productive growth stages of durum wheat under saline
conditions. Agric. Water Manage. J. 180: 13-21.
18.Kemper, T., and Sommer, S. 2002. Estimate of heavy metal contamination in soils after a
mining accident using reflectance spectroscopy. Environ. Sci. Technol. 36: 2742-2747.
19.Khashei Siuki, A., Jalali Moakhar, V.R., Noferesti, A.M., and Ramazani, Y. 2015.
Comparing nonparametric k-nearest neighbor technique with ANN model for predicting soil
saturated hydraulic conductivity. Soil management and sustainable production. 5: 3. 81-95.
(In Persian)
20.Khayamim, F., Khademi, H., Stenberg, B., and Wetterlind, J. 2015. Capability of Vis-NIR
Spectroscopy to Predict Selected Chemical Soil Properties in Isfahan Province. J. Water Soil
Sci. 19: 72. 81-92. (In Persian)
21.Kodaira, M., and Shibusawa, S. 2013. Using a mobile real-time soil visible-near infrared
sensor for high resolution soil property mapping. Geoderma. 199: 64-79.
22.Lagacherie, P., Baret, F., Feret, J.B., Netto, J.M., and Robbez-Masson, J.M. 2008. Estimation
of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral
measurements. Rem. Sens. Environ. J. 112: 3. 825-835.
23.Leonard, T., and Hsu, J.S.J. 2001. Bayesian Methods: an analysis for statisticians and
interdisciplinary. Cambridge University Press, Cambridge, 333p.
24.Meysami, A. 2011. Look at the position of geology and mineral deposits of the island of
Hormuz in the Persian Gulf. The second congress. Islamic Azad University, Ashtiyan Unit.
http://www.civilica.com/Paper-GEOSYMAIAU02-GEOSYMAIAU02_262.html. (In Persian)
25.Miranda Salazar, D., Martınez Reyesa, H.L., Martınez-Rosasa, M.E., Miranda Velascoa,
M.M., and Arroyo Ortegaa, E. 2012. Visible-near infrared spectroscopy to assess soil
contaminated with cobalt. Proc. Engin. J. 35: 245-253.
26.Mohajer, R., Salehi, M.H., and Beigi Herchegani, H. 2009. Estimating Soil Cation Exchange
Capacity (in View of Pedotransfer Functions) Using Regression and Artificial Neural
Networks and the Effect of Data Partitioning on Accuracy and Precision of Functions.
Water and Soil Science. 13: 49. 99-110. (In Persian)
27.Mohammadi Moghaddam, T., Razavi, S.M.A., Taghizadeh, M., Sazgarnia, A., and Pradhan,
B. 2015. Vis-NIR hyperspectral imaging and multivariate analysis for prediction of the
moisture content and hardness of Pistachio kernels roasted in different conditions. J. Agric.
Machin. 5: 2. 281-291. (In Persian)
28.Moros, J., de Vallejuelo, S.F.O., Gredilla, A., de Diego, A., and Madariaga, J.M. 2009. Use
of reflectance infrared spectroscopy for monitoring the metal content of the estuarine
sediments of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque
Country). Environ Sci. Technol. J. 43: 93. 14-9320.
29.Patil, N.G., and Singh, S.K. 2016. Pedotransfer Functions for Estimating Soil Hydraulic
Properties: A Review. Pedosphere. 26: 4. 417-430.
30.Pirie, A., Singh, B., and Islam, K. 2005. Ultra-violet, visible, near-infrared, and mid infrared
diffuse reflectance spectroscopic techniques to predict several soil properties. Aust. J. Soil
Res. 43: 713-721.
31.Sá, I., Semedo, M., and Cunha, M.E. 2016. Kidney cancer. Heavy metals as a risk factor.
Porto Biomed. J. 1: 1. 25-28.
32.Santra, P., Sahoo, R.N., Das, B.S., Samal, R.N., Pattanaik, A.K., and Gupta, V.K. 2009.
Estimation of soil hydraulic properties using proximal spectral reflectance in visible,
near-infrared, and short wave-infrared (VIS-NIR-SWIR) region. Geoderma. 152: 338-349.
33.Seyedmohammadi, J., Esmaeelnejad, L., and Shabanpour, M. 2016. Derivation the suitable
pedotransfer functions for prediction of some difficult available soil properties. J. Water Soil
Cons. 23: 4. 204-217. (In Persian)
34.Shamsadin, H., Jalali, V., and Jafari, A. 2015. Application of multivariate statistical methods
and environmental pollution indices in evaluation of distribution of heavy metals. J. Water
Soil Resour. Cons. 4: 3. 65-76. (In Persian)
35.Soil resources quality standards and its guidelines. 2012. Deputy of the human environment,
soil and water office Press, 166p. (In Persian)
36.Song, Y., Li, F., Yang, Z., Ayoko, G.A., and Frost, R.L. 2012. Diffuse reflectance
spectroscopy for monitoring potentially toxic elements in the agricultural soils of Changjiang
River Delta, China. Appl. Clay Sci. J. 64: 75-83.
37.Statistical Yearbook of Hormozgan Province. 2013. http://www.mpohr.gov.ir/index.aspx?
fkeyid=&siteid=1&pageid=130&newsview=1.
38.Vapnik, V. 1995. The Nature of Statistical Learning Theory. Springer-Verlag, New York,
330p.
39.Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J., and Skjemstad, J.O.
2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for
simultaneous assessment of various soil properties. Geoderma. 131: 59-75.
40.Viscarra Rossel, R.A.V. 2008. ParLeS: Software for chemometric analysis of spectroscopic
data. Chemometrics and Intelligent Laboratory Systems. 90: 72-83.
41.Wang, J., Cui, L., Gao, W., Shi, T., Chen, Y., and Gao, Y. 2014. Prediction of low heavy
metal concentration in agriculture soils using visible and near-infrared reflectance
spectroscopy. Geoderma. 216: 1-9.
42.Williams, P.C., and Malley, D.F. 1997. Use of Near-Infrared reflectance spectroscopy in
prediction of heavy metal in freshwater sediments by their association with organic matter.
Environ. Sci. Technol. 31: 3461-3467.
43.Xie, X., Pan, X.Z., and Sun, B. 2012. Visible and near-infrared diffuse reflectance
spectroscopy for prediction of soil properties near a Copper smelter. Pedosphere. 22: 351-366.