اثر ریزوسفر بر فراهمی عناصر خاک در حضور بیوچار و کمپوست ضایعات هرس و تلقیح میکوریزی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد،گروه علوم خاک، دانشگاه ارومیه، ایران

2 هیات علمی دانشگاه ارومیه

3 دانشگاه ارومیه، دانشکده کشاورزی، گروه علوم خاک

چکیده

سابقه و هدف: ریزوسفر محل تقابل خاک-ریشه، جهان کوچک و پویایی است که در آن میکروارگانیسم‌ها، ریشه‌های گیاه و اجزای خاک با هم در ارتباطند. ضایعات هرس درختان با تبدیل شدن به بیوچار و کمپوست و افزودن به خاک سبب بهبود خصوصیات فیزیکی، شیمیایی و بیولوژیک خاک می‌شوند. از جمله راهکار دیگر افزایش فراهمی عناصر غذایی، استفاده از پتانسیل میکروارگانیسم‌ها، همانند قارچ‌های میکوریز آربوسکولار می‌باشد. با توجه به اینکه مطالعه ریزوسفر نتایج سودمندی را به دنبال دارد. لذا هدف از این تحقیق بررسی تاثیر ریزوسفر گندم تیمار شده با بیوچار و کمپوست حاصل از ضایعات هرس درختان و تلقیح میکوریزی بر فراهمی عناصر غذایی پرمصرف در شرایط رایزوباکس بود.
مواد و روش‌ها: برای انجام این پژوهش، آزمایشی بصورت فاکتوریل در قالب طرح کاملا تصادفی، با سه تکرار شامل منابع آلی (بیوچار ضایعات هرس، کمپوست ضایعات هرس و شاهد)، قارچ میکوریزی (Glomus fasciculatum و عدم تلقیح) و خاک (خاک ریزوسفری و غیرریزوسفری) در شرایط گلخانه‌ای در رایزوباکس اجرا گردید. برای این منظور نمونه خاک غیرزراعی با بافت سبک تهیه شد. بیوچارها از پیرولیز در دمای 350 درجه سانتی‌گراد بدست آمد. کمپوست از گلخانه تحقیقاتی گروه علوم خاک دانشگاه ارومیه تهیه شد. برای کشت گیاه از رایزوباکس در ابعاد20*15*20 سانتی‌متر (طول، عرض، ارتفاع) استفاده شد. برای انجام آزمون‌های گلخانه‌ای، بیوچار و کمپوست ضایعات هرس هرکدام بر حسب 5/1 درصد کربن آلی خالص به خاک (80/5 کیلوگرم خاک برای هر باکس) اضافه و به باکس‌ها منتقل گردید. برای کشت گیاه، بذر‌های گندم (.Triticum aestivum L) رقم پیشتاز دررایزوباکس‌ها کشت گردیدند. در پایان دوره رشد، pH و قابلیت هدایت الکتریکی (EC) در عصاره‌های صاف شده 1 به 5 (خاک به آب)، کربن‌آلی (OC) به روش والکلی‌بلک، درصد کلنیزاسیون میکوریزی ، نیتروژن (N) ، پتاسیم (K) و فسفر (P) قابل جذب در خاک‌های ریزوسفری و غیرریزوسفری همچنین در گیاه نیز، نیتروژن، پتاسیم و فسفر اندام هوایی به روش‌های استاندارد تعیین شد.
یافته‌ها: نتایج نشان داد که بیشترین میزان pH در تیمار بیوچار (88/7) بدون تلقیح میکوریزی بود. مقدار OC و فراهمی N، P و K در تیمار کمپوست همراه با قارچ‌ میکوریزی بطور معنی‌داری بالاتر از سایر تیمار‌ها بود. همچنین کمپوست در مقایسه با بیوچار مقادیر بیشتری از EC، OC، N، P و K را در ریزوسفر و غیرریزوسفر فراهم کرد. تلقیح میکوریزی فراهمی P وK را در خاک غیرریزوسفر بترتیب 70/1 و 16/1 برابر نسبت به ریزوسفر افزایش داد. مقدار نیتروژن کل در تیمار تلقیح میکوریزی ریزوسفر 19/1 برابر بیشتر از غیرریزوسفر بود. جذب بیشتر N، P و Kتوسط گیاه در تلقیح میکوریزی بیوچار سبب افزایش 1/48، 6/39 و 8/38 درصدی نسبت به شاهد شد.
نتیجه‌گیری: استفاده از منابع آلی، خصوصیات شیمیایی ریزوسفر را بطور چشمگیری تغییر داد و منجر به افزایش قابلیت دسترسی عناصر غذایی در خاک و در نهایت افزایش فراهمی آن‌ها در گیاه شد. همچنین استفاده از روش رایزوباکس با افزودن ماده‌آلی به همراه تلقیح میکوریزی توانست فرآیندهای میکروبی‌ ریزوسفری مرتبط با فراهمی عناصر غذایی را به خوبی نشان دهد. چنین استنباط می‌گردد که کاربرد بیوچار و کمپوست در شرایط تلقیح میکوریزی منجر به افزایش فراهمی عناصر غذایی در خاک و گیاه می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of rhizosphere on availability of soil elements in the presence of biochar and compost pruning waste and mycorrhizal inoculation

نویسندگان [English]

  • Roghayeh Vahedi 1
  • MirHassan Rasouli-Sadaghiani 2
  • Mohsen Barin 3
1 MSc. Student, Dept. of Soil Science, Urmia University, Iran
2 Prof., of Soil Science, Dept. of Soil Science, Urmia University,Iran
3 Assistance Prof., of Soil Science, Dept. of Soil Science, Urmia University,Iran
چکیده [English]

Background and objective: The rhizospher, a soil-root interface, is a dynamic microcosm where interact microorganisms, plant roots and soil constituents. Trees pruning waste by turning into biochar and compost and adding to soil improves the physical, chemical and biological properties of the soil. Another approach to availability is to use the potential microorganisms such as Arbuscular mycorrhizal fungi. Considering that rhizospher studies have beneficial results. The aim of this study was to investigate the effect of wheat rhizosphere treated with biochar and compost prepared from trees pruning and mycorrhizal inoculation on availability of macronutrient in rhizobox condition.
Materials and methods: This study was carried out in a factorial based on completely randomized design under greenhouse condition in rhizobox. The factors including organic sources (pruning waste biochar, pruning waste compost and control), mycorrhizal inoculation (Glomus fasciculatum and non-inoculation) and soil (rhizosphere and non-rhizosphere soil). For this purpose, a soil sample with light texture was prepared. Biochars produced from temperature of approximately 350°C. Also, compost was prepared from the research greenhouse department of soil science of Urmia University. The plant was planted in Rizobox at 20 * 15 * 20 cm (length, width and height). In order to greenhouse tests, the biochar and compost added to the boxes in terms of 1.5% pure organic carbon (each box containing 5.80 kg of soil). For plant cultivation, wheat seeds (Triticum aestivum L.) cultivar Pishtaz were grown in rhizobaxes. At the end of the growth period, pH and EC (1:5, soil: water), organic carbon by walkley-black method, The percentage of mycorrhizal colonization, Nitrogen, Potassium, phosphorus in rhizosphere and non-rhizosphere soils and content macronutrients in the plant were determined.
Results: The results showed that the highest pH was in biochar (7.88) non- mycorrhizal inoculation. The amount of OC, N, P and K in compost treatment with mycorrhizal inoculation were significantly higher than other treatments. Compost treatments in comparison with biochar provided more contents of EC, OC, N, P and K in the rhizosphere and non-rhizosphere. Mycorrhizal inoculation increased the availability of P and K by 1.70 and 1.16 times in non-rhiozospher soil, compared to the rhizosphere. However, the content N in the rhizosphere soil of the mycorrhizal inoculation treatment was 1.19 times higher than non-rhizosphere soil. The higher uptake of N, P and K by plant in inoculum of mycorrhiza biochar increased 48.1, 39.6 and 38.8% compared to the control, respectively.
Conclusion: the use of organic materials significantly changed the chemical properties of the rhizosphere and increased the availability of nutrients in calcareous soils. Ultimately, they increase availability of nutrients in plants. Also, the use of rizhobox method by adding organic matter along with mycorrhizal inoculation could justify the microbial-rhizospheric processes in relation to the availability of nutrients. It can be concluded that the application of biochar and compost in mycorrhizal inoculations leads to an increase in the nutrients availibity in soils and plant.

کلیدواژه‌ها [English]

  • rhizosphere
  • Organic matter
  • nutrient availiblity
  • mycorrhizal inoculation
1.Anderson, R.C., Liberta, A.E., and Dickman, L.A. 1984. Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture-nutrient gradient. J. Oecol.
64: 111-117.
2.Anwar, M., Patra, D.D., Chand, S., Alpesh, K., Naqvi, A.A., and Khanuja, S.P.S. 2005. Effect of organic manures and inorganic fertilizer on growth, herb and oil yield, nutrient accumulation and oil quality of French basil. J. Comm. Soil Sci. Plant Anal. 36: 1737-1746.
3.Atkinson, C.J., Fitzgerald, J.D., and Hipps, N.A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. J. Plant Soil.
337: 1-18.
4.Barea, J.M., Azcon, R., and Azcon-Aguilar, C. 2002. Mycorhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek. 81: 343-351.
5.Basak, B.B., and Biswas, D.R. 2009. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. J. Plant Soil. 317: 235-255.
6.Biederman, L.A., and Harpole, W.S. 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. J. GCB Bio. 5: 202-214.
7.Borken, W., Muhs, A., and Beese, F. 2002. Changes in microbial and soil properties following compost treatment of degraded temperate forest soils. J. Soil Biol. Biochem. 34: 403-412.
8.Bramryd, T. 2001. Effect of liquid and dewatered sewage sludge applied to a Scot pine stand (Pinus sylvestris L.) in central Sweden. J. Forest. Ecol. Manage. 147: 197-216.
9.Bustamante, M.A., Perez-Murcia, M.D., Paredes, C., Moral, R., Pe´rez-Espinosa, A., and Moreno-Caselles, J. 2007. Short-term carbon and nitrogen mineralisation in soil amended with winery and distillery organic wastes. J. Biores. Technol. 98: 3269-3277.
10.Cecil, F., and Tester, C.F. 1990. Organic amendment effects on physical and chemical properties of Somali soil. J. SSSA. 54: 827-831.
11.Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. 2007. Agronomic values of greenwaste biochar as a soil amendment. J. Soil Res. 45: 629-634.
12.Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. 2008. Using poultry litter biochars as soil amendments. Austr. J. Soil Res. 46: 437-444.
13.Chintala, R., Mollinedo, J., Schumacher, T.E., Malo, D.D., and Julson, J.L. 2013. Effect of biochars on chemical properties of acidic soil. J. Arch. Agron. Soil Sci. 60: 393-404.
14.Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid, J., Finlay, R.D., Wardle, D.A., and Lindahl, B.D. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. J. Sci. 339: 1615-1618.
15.Dharmakeerthi, R.S., Chandrasiri, J.A.S., and Edirimanne, V.U. 2012. Effect of rubber wood biochar on nutrition and growth of nursery plants of Hevea brasiliensis established in an Ultisol. Springer Plus. 1: 1-84.
16.Giusquiani, P.L., arucchini, C.M., and Businelli, M. 1988. Chemical properties of soils amended with compost of urban waste. J. Plant. Soil 109: 73-78.
17.Glowa, K.R., Arocena, J.M., and Massicote, H.B. 2003. Extraction of potassium and/ or magnesium from selected soil minerals by Piloderma. J. Acta Biol. 7: 299-306.
18.Gyaneshwar, P., Naresh Kumar, G., Parekh, L.J., and Poole, P.S. 2002. Role of soil microorganisms in improving P nutrition of plants. J. Plant. Soil. 245: 83-93.
19.Hinsinger, P., Plassard, C., Tang, C., and Jaillard, B. 2003. Origins of root-mediated pH changes in the rhizosphere and their response to environmental constraints: a review.
 J. Plant. Soil. 248: 43-59.
20.Hinsinger, P., Gobran, G.R., Gregory, P.J., and Wenzel, W.W. 2005. Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. J. New Phytol. 168: 293-303.
21.Hu, Y., and Barker, A.V. 2004. Effects of composts and their combinations with other materials on nutrient accumulation in tomato leaves. Commun. J. Soil Sci. Plant Anal.
35: 2809-2823.
22.Jordan, N.R., Zhang, J., and Huerd, S. 2000. Arbuscular-mycorrhizal fungi: potential roles in weed management. J. Weed Res. 40: 397-410.
23.Khalil, H.M.A., and Hassan, R.M. 2015. International Journal of Plant Research, Raising the Productivity and Fiber Quality of Both White and Colored Cotton Using Eco-Friendly Fertilizers and Rice Straw. J. Integr. Plant Res. 5: 5. 122-135.
24.Koide, R.T., and Mosse, B. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza. 14: 145-163.
 25.Kookana, R.S., Sarmah, A.K., Van Zwieten, L., Krull, E., and Singh, B. 2011. Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences. Advances in Agronomy J. 112: 103-143.
26.Kumar, K., and Goh, K.M. 2002. Management practices of antecedent leguminous and non–leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance. J. Eur. Agron. 16: 295-308.
27.Lambers, H., Raven, J.A., Shaver, G.R., and Smith, S.E. 2008. Plant nutrient acquisition strategies change with soil age. J. Trends. Ecol. Evol. 23: 95-103.
28.Laird, D., Fleming, P., Wang, B.Q., Horton, R., and Karlen, D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. J. Geod. 158: 436-442.
29.Lehmann, J., Silva, J.P., Steiner, C., Nehls, T., Zech, W., and Glaser, B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. J. Plant. Soil. 249: 343-357.
30.Li, X., Lu, J., Wu, L., Chen, F., and Malhi, S.S. 2010. Potassium Fixation and Release Characteristics in Rhizosphere and Nonrhizosphere Soils for a Rapeseed-Rice Cropping Sequence. J. Soil. Sci. Plant, 41p.
31.Liu, Y., Yang, M., Wu, Y., Wang, H., Chen, Y., and Wu, W. 2011. Reducing CH4 and CO2 emission from waterlogged paddy soil with biochar. J. S. S. 11: 930-939.
32.Mäder, P., Edenhofer, S., Boller, T., Wiemken, A., and Niggli, U. 2000. Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic biological) and high-input (conventional) farming systems in a crop rotation. J. Biol. Fert. Soils. 31: 150-156.
33.Marschner, H., and Dell, B. 1994; Nutrient uptake in mycorrhizal symbiosis, J. Plant. Soil. 159: 89-100.
34.Menge, J.A. 1983. Utilization of vesicular-arbuscular mycorrhizal fungi in agriculture.
J. Can. Bot. 61: 1015-1024.
35.Metwally, S.Y., and Pollard, A.G. 2006. Effects of soil moisture conditions on the uptake of plant nutrients by barley and on the nutrient content of the soil solution. J. Sci. Food. Agri. 10: 632-636.
36.Moritsuka, N., Yanai, J., and Kosaki, T. 2000. Effect of plant growth on the distribution and forms of soil nutrients in the rhizosphere. J. Soil. Sci. Plant. Nutr. 46: 439-447.
37.Moshiri, F. 2010. Chemical behavior of zinc in rhizosphere of two Zn-efficient and Zn-in efficient wheat cultivar. Ph.D. Thesis. Soil Science Department. University of Tehran.
38.Nieto, G., Gascó, J., Paz-Ferreiro, J., Fernández, M., Plaza, C., and Méndez, A. 2015. The effect of pruning waste and biochar addition on brown peat basedgrowing media properties. J. Sci. Hort. 199: 142-148.
39.Nigussie, A., Kissi, E., Misganaw, M., and Ambaw, G. 2012. Effect of biochar application on soil Properties and nutrient uptake of Lettuces (Lactuca sativa) grown in chromium polluted soils. Am-Euras. J. Ag. Environ. Sci. 12: 3. 369-376.
40.Norozi, S. 2006. Release of Potassium from some mica minerals through some organic acid in rhizosphere of barley. M.Sc. Thesis in Soil Science. Soil Science Department. Isfahan University of technology, Isfahan, Iran, 158p.
41.Perner, H., Schwarz, D., and George, E. 2006. Effect of Mycorrhizal Inoculation and Compost Supply on Growth and Nutrient Uptake of Young Leek Plants Grown on Peat-based Substrates. J. Hort. Sci. 41: 3. 628-632.
42.Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., and Lehmann, J. 2011. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. J. Biol. Fert. 48: 3. 271-284.
43.Roberts, K.G., Gloy, B.A., Joseph, S., Scott, N.R., and Lehmann, J. 2010. Life cycle assessment of biochar systems: Estimating the energetic, economic and climate change potential. J. Environ. Sci. Technol. 44: 827-833.
44.Roppongi, K. 1993. Residual effects of rice straw compost after continuous application to upland alluvial soil. J. Soil. Sci. Plant. Nutr. 64: 417-422.
45.Ruiz-Lozano, J.M., and Azcon, R. 2000. Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza. 10: 137-143.
46.Saito, M. 1990. Charcoal as a micro-habitat for VA mycorrhizal fungi and its practical implication. Agriculture, J. Eco. Environ. 29: 341-344.
47.Seguin, V., Gagnon, C., and Courchesne, F. 2004. Changes in water extractable metals, pH and organic carbon concentrations at the soil-root interface of forested soils. J. Plant. Soil. 206: 1-17.
48.Sohi, S.P., Krull, E., Lopez-Capel, E., and Bol, R. 2010. A review of biochar and its use and function in soil. J. Adv. Agron. 105: 47-82.
49.Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., and Sumner, M.E. 1996. Methods of soil analysis Part 3- Chemical methods. Soil Science Society of America Book Ser. 5, Madison, Wiscons in, USA, 1390p.
50.Toal, M.E., Yeomans, C., Killham, K., and Meharg, A.A. 2000. A review of rhizosphere carbon flow modelling. J. Plant. Soil. 222: 263-281.
51.Upadhyay, P.K. 2015. The Influence of Biochar on Crop Growth and the Colonization of Horticultural Crops by Arbuscular Mycorrhizal Fungi. Thesis: The University of Queensland; School of Agriculture and Food Sciences. A thesis submitted for the degree of Doctor of Philosophy.
52.Vanek, S.J., and Lehmann, J. 2014. Phosphorus availability to beans via interactions between mycorrhizas and biochar. J. Plant. Soil. 395: 105-123.
53.Weber, J., Karczewska, A., Drozd, J., Licznar, M., Licznar, S., Jamroz, E., and Kocowicz, A. 2007. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. J. Soil. Biol. Bioch. 39: 1294-1302.
54.Whalen, J.K., Chi Chang, and Olsen, B.M. 2001. Nitrogen and phosphorous mineralization potentials of soil receiving repeated annul cattle manure applications. J. Biol. Fert. Soils.
34: 334-341.
55.Zhang, A.P., Liu, R.L., Gao, J., Zhang, Q.W., Xiao, J.N., Chen, Z., Yang, S.Q., Hui, J.Z., and Yang, L.Z. 2015. Effects of Biochar on Nitrogen Losses and Rice Yield in Anthropogenicalluvial Soil Irrigated with Yellow River Water. J. Agro. Environ. Sci.
10: 116-54.