ارزیابی شاخص‌های کیفیت خاک و ارتباط آن با عملکرد برنج در شالیزار‌های مرکزی استان گیلان

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم خاک، دانشگاه گیلان

2 استادیار گروه زراعت و اصلاح نباتات، دانشگاه گیلان

3 استادیار گروه علوم خاک، دانشگاه گیلان،

4 گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی، دانشگاه گیلان

چکیده

سابقه و هدف: ارزیابی کیفیت خاک و ایجاد تعادل بین میزان تولید محصول و بهبود کیفیت منابع طبیعی یکی از مسائل مورد توجه در مدیریت پایدار خاک‌ها به‌منظور تولید بهینه کشاورزی و حفظ منابع طبیعی است. در عرصه‌های کشاورزی آگاهی از عوامل مؤثر بر کیفیت خاک برای مدیریت بهینه و رسیدن به حداکثر بهره‌وری اقتصادی، امری ضروری است. در این راستا به‌منظور دستیابی به مدیریت پایدار خاک و پیش‌بینی خطرات تخریب خاک، تعیین روشی مناسب برای ارزیابی کیفیت خاک نیز دارای اهمیت می‌باشد. اﻳﻦ ﭘﮋوﻫﺶ ﺑﺎ ﻫﺪف ارزیابی کیفیت خاک اراضی شالیزاری، تعیین حداقل ویژگی‌های مؤثر بر کیفیت خاک و بررسی تأثیر شاخص‌های کیفیت خاک به‌دست آمده با استفاده از روش‌های مختلف بر عملکرد برنج، در اراضی شالیزاری منطقه پیربازار استان گیلان انجام گرفت.
مواد و روش‌ها: بر اساس متوسط عملکرد سالیانه برنج، دو دسته اراضی شامل شالیزارهای با عملکرد پایین (t ha-1 6/4>) و عملکرد بالا (t ha-1 6/4≤) در منطقه مورد مطالعه انتخاب شدند. جمعاً 60 نمونه خاک مرکب از عمق صفر تا 30 سانتی‌متر و محصول برنج در پلاتی به وسعت 1 متر مربع به مرکزیت محل‌های نمونه‌برداری خاک برداشت شد. در این پژوهش با استفاده از روش تجزیه به مؤلفه‌های اصلی (PCA)، از میان 20 ویژگی فیزیکی، شیمیایی و زیستی خاک به‌عنوان ویژگی‌های مؤثر بر کیفیت خاک (TDS)، 5 ویژگی به‌عنوان حداقل ویژگی‌های مؤثر بر کیفیت خاکMDS) ) انتخاب گردید. سپس کیفیت خاک شالیزارهای با عملکرد پایین و بالا با استفاده از دو مدل شاخص تجمعی ساده (IQISA) و شاخص تجمعی وزن‌دار (IQIWA) و هر کدام در دو مجموعه ویژگی‌های خاک TDS و MDS ارزیابی شد.
یافته‌ها: نتایج نشان داد که 5 ویژگی کربن‌ آلی، نیتروژن کل، پتاسیم قابل استفاده، درصد رس و فعالیت آنزیم اوره‌آز به‌عنوان مجموعه ویژگی‌های MDS، می‌تواند 67 درصد تغییرات کیفیت خاک‌ها را توصیف نماید. ارزیابی کیفیت خاک اراضی شالیزاری نشان داد زمانی‌که شاخص تجمعی ساده و وزن‌دار کیفیت خاک با استفاده از مجموعه MDS تعیین می‌شوند، اختلاف معنی‌داری بین شاخص کیفیت خاک شالیزارهای با عملکرد پایین و بالا مشاهده می‌شود؛ به‌طوری‌که شالیزارهای با عملکرد بالا از میانگین IQISA-MDS و IQIWA-MDS بالاتری (به‌ترتیب 84/0 و 89/0) نسبت به شالیزارهای با عملکرد پایین (به‌ترتیب 78/0 و 80/0) برخوردار هستند. همچنین بیشترین مقادیر همبستگی شاخص کیفیت خاک با عملکرد برنج برای شاخص‌های IQIWA-MDS و IQISA-MDS (54/0-44/0=R2) در هر دو سطع عملکرد به‌دست آمد.
نتیجه‌گیری: اختلاف معنی‌دار بین شاخص‌های کیفیت خاک شالیزارهای با دو سطح عملکرد که از مجموعه MDS استفاده کرده‌اند، نشان می‌دهد که مجموعه MDS به شکل مؤثرتری اختلاف کیفیت خاک شالیزارهای با بهره‌وری متفاوت را نشان می‌دهد. همبستگی معنی‌دار شاخص‌های IQISA-MDS و IQIWA-MDS با عملکرد برنج بیانگر این است که انتخاب تعداد محدودتری از ویژگی‌های خاک به‌عنوان MDS به درستی انجام شده و توانسته وضعیت خاک برای تولید برنج را به خوبی ارزیابی نماید. بنابراین با استفاده از مجموعه MDS علاوه بر کاهش هزینه و صرفه‌جویی در وقت، می‌توان با اطمینان قابل قبولی شاخص‌های کیفیت خاک اراضی شالیزاری منطقه مورد مطالعه را تعیین کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessing soil quality indices and their relationships with rice yield in paddy fields of central Guilan province

نویسندگان [English]

  • samira hemmati 1
  • Nafiseh Yaghmaeian Mahabadi 2
  • Mohammad Bagher Farhangi 3
  • Atefeh Sabouri 4
1 Department of Soil Science, University of Guilan, Iran
2 Assistant Professor. Soil Science Dept.University of Guilan
3 Soil Science Department, University of Guilan
4 Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan
چکیده [English]

Background and Objectives: Assessing soil quality and balancing between crop production and quality of natural resources are essential issues in sustainable soil management for agricultural and natural resource protection. In agricultural fields for optimum management and maximum economic productivity, knowledge of the factors affecting the soil quality is necessary. Also, determining the appropriate method for soil quality evaluation is important for sustainable soil management and soil degradation prediction. This study was carried out with the aim of assessing soil quality of paddy fields, determining the minimum data set for soil quality evaluation and investigating the effect of soil quality index using different methods on rice yield in Pirbazar region of Guilan province.
Materials and Methods: Based on the mean annual rice yield, the selected paddy fields were divided into low (4.6 t ha-1) productivity. Sixty soil samples were collected from 0 to 30 cm depth. The rice products were harvested at a 1 m2 plot at each site. In this research, using the principal component analysis (PCA) method, among 20 physical, chemical and biological soil indicators as total data set (TDS), 6 indicators were selected for the minimum data set (MDS). Then, the soil quality of high and low productivity paddy fields was evaluated by simple additive integrated quality index (IQISA) and weighted additive integrated quality index (IQIWA) in two collections of soil properties include MDS and TDS.
Results: To evaluate soil quality of paddy fields, an MDS was established with organic carbon, total nitrogen, available potassium, clay percentage and urease activity and these explained about 67% of the soil quality variability. The significant differences were found between the soil quality index of low and high productivity paddy fields when IQIWA and IQISA were developed based on MDS. So that, the mean IQISA-MDS and IQIWA-MDS of the high productivity paddy fields (0.84 and 0.89, respectively) were higher than low productivity paddy fields (respectively 0.78 and 0.80, respectively). Additionally, data indicated that IQISA-MDS and IQIWA-MDS were most strongly correlated with crop yield, the correlation coefficient ranged between 0.44–0.54.
Conclusion: Significant differences between the soil quality indices based on MDS for low and high productivity paddy fields indicated that the MDS more efficiently shows the difference of soil quality between paddy fields with different productivity. The significant correlation between IQISA-MDS and IQIWA-MDS indices with rice yield indicated that an MDS with a limited number of indicators was carefully selected and effectively evaluated the status of soils as a rice production medium. Therefore, using an MDS can save time and money and assess the reliable soil quality indices of paddy fields in the study area.

کلیدواژه‌ها [English]

  • Minimum data set
  • Integrated soil quality index
  • Weighted additive soil quality index
  • Principal component analysis
  • Rice yield
 1.Acton, D.F., and Gregorich, L.J. 1995. The health of our soils - towards sustainable agriculture in Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ont. 138p.
2.Alef, K., and Nannipieri, P. 1995. Methods in Applied Soil Microbiological and Biochemistry. Academic Press INC. 576p.
3.Al-Kaisi, M.M., Yin, X.H., and Licht, M.A. 2005. Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agriculture, Ecosystems and Environment. 105: 635-647.
4.Andrews, S., Karlen, D., and Mitchell, J. 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems and Environment. 90: 25-45.
5.Andrews, S.S., and Carroll, C.R. 2001. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecological Applications. 11: 1573-1585.
6.Aparicio, V., and Costa, J.L. 2007. Soil quality indicators under continuous cropping systems in the Argentinean pampas. Soil and Tillage Research. 96: 155-165.
7.Armenise, E., Redmile-Godon, M.A., Stellaci, W.M., Ciccarese, A., and Rubino, P. 2013. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research. 130: 91-98.
8.Boluda, R., Roca-Pérez, L., Iranzo, M., Gil, C., and Mormeneo, S., 2014. Determination of enzymatic activities using a miniaturized system as a rapid method to assess soil quality. Europ. J. Soil Sci. 65: 2. 286-294.
9.Bonanomi, G., D'Ascoli, R., Antignani, V., Capodilupo, M., Cozzolino, L., Marzaiooli, R., Puopolo, G., Rutigliano, F.A., Scelza, R., Scotti, R., Rao, M.A., and Zoina, A. 2011. Assessing soil quality under intensive cultivation and tree orchards in Southern Italy. Applied Soil Ecology. 47: 3. 184-194.
10.Borůvka, L., Mládková, L., Drábek, O., and Vašát, R. 2007. Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma. 140: 4. 374-382.
11.Cattell, R.B. 1966. The Scree test for the number of factors. Multivariate Behavioral Research. 1: 245-276.
12.Cherubin, M.R., Karlen, D.L., Cerri, C.E.P., Franco, A.L.C., Tormena, C.A., Davies, C.A., and Cerri, C.C. 2016. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS ONE. 11: 3. 1-26.
13.D'Hose, T., Cougnon, M., Vliegher, A.D., Vandecasteele, B., Viaene, N., Cornelis, W., Bockstaele, E.V., and Reheul, D. 2014. The positive relationship between soil quality and crop production: a case study on the effect of farm compost application. Applied Soil Ecology. 75: 189-198.
14.Doran, J.W., and Jones, A.J. 1996. Methods for Assessing Soil Quality. Soil Science Society of America Special Publication, vol. 49. Soil Science Society of America, Madison, WI. 401p.
15.Finkenbein, P., Kretschmer, K., Kula, K., Klotz, S., and Heilmeier, H. 2013. Soil enzyme activities as bioindicators for substrate quality in revegetation of a subtropical coal mining dump. Soil Biology and Biochemistry. 56: 87-89.
16.Fu, W.J., Tunney, H., and Zhang, C.S. 2010. Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil Tillage Research. 106: 185-193.
17.Gee, G.W., and Bauder, J.M. 1986. Particle-size analysis. P 383-411, In: A., Klute (ed.). Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. American Society of Agronomy. Soil Science Society of America, Madison, WI.
18.Guo, L., Sun, Z., Ouyang, Z., Han, D., and Li, F. 2017. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena. 152: 135-143.
19.Haynes, R.J. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: an overview Advances in Agronomy. 85: 221-268.
20.Hesse, P.R. 1971. A text book of soil chemical analysis. John Murray. London. 556p.
21.Kaiser, H.F. 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement. 20: 141-151.
22.Karlen, D.L., Andrews, S.S., and Doran, J.W. 2008. Soil quality: Current concepts and applications. Advances in Agronomy. 74: 1-40.
23.Kemper, W.D., and Rosenau, R.C. 1986. Aggregate stability and size distribution. P 425-442, In: A., Klute (ed.). Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. American Society of Agronomy. Soil Science Society of America, Madison, WI. 
24.Knudsen, D., Peterson, G.A., and Pratt, P.F. 1982. Lithium, sodium and potassium. P 225-246, In: A.L.
Page (ed.) Methods of Soil Analysis. Part 2. America Society of Agronomy. Madison, WI.
25.Li, P., Zhang, T.L., Wang, X.X., and Yu, D.S. 2013. Development of biological soil quality indicator system for subtropical China. Soil Tillage Research. 126: 112-118.
26.Lima, A.C., Brussaard, L., Totola, M.R., Hoogmoed, W.B., and De Goede, R.G. 2013. A functional evaluation of three indicator sets for assessing soil quality. Applied Soil Ecology. 64: 194-200.
27.Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA soil test for Zinc, Iron, Manganese and Copper. Soil Sci. Soc. Amer. J. 42: 3. 421-428.
28.Liu, Z., Zhou, W., Shen, J., He, P., Lei, Q., and Liang, G. 2014. A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields south China. Geoderma. 235-236: 39-47.
29.Liu, Z., Zhou, W., Li, S., He, P., Liang, G., Lv, J., and Jin, H. 2015. Assessing soil quality of gleyed paddy soils with different productivities in subtropical China. Catena. 133: 293-302.
30.Masto, R., Chhonkar, P., Singh, D., and Patra, A. 2008. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilization and managing for 31 years in the semi-arid soils of India. Environmental Monitoring and Assessment. 136: 419-435.
31.Mukherjee, A., and Lal, R. 2014. Comparison of Soil Quality Index Using Three Methods. PLoS ONE. 9: 8. 1-15.
32.Norman, G.R., and Streiner, D.L. 2008. Biostatistics: The Bare Essentials. People’s Medical Publishing House, Shelton, CT. 200p.
33.Olsen, S.R., Cole, C.V., Watanabe, F.S., and Dean, L.A. 1954. Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, D.C., USDA Circ. 939p.
34.Page, A.L., Miller, R.H., and Keeney, D.R. 1982. Methods of Soil Analysis, part 2, chemical and microbiological properties. American Society of Agronomy, Inc. Soil Science Society of America, Madison, WI.
35.Qi, Y., Darilek, J.L., Huang, B., Zhao, Y., Sun, W., and Gu, Z. 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma. 149: 325-334.
36.Ranjbar, A., Emami, H., Khorasani, R., and Karimi, Karoyeh, A.R. 2016. Soil Quality Assessments in Some Iranian Saffron Fields. J. Agric. Sci. Technol. 18: 3. 865-878.
37.Ray, SK., Bahttacharyya, T., Reddy, K.R., Pal, D.K., Tiwary, P., Mandal, D.K., Mandal, C., Prasad, J., Sarkar, D., and Venugopalan, M.V. 2014. Soil
and land quality indicators of the Indo-Gangetic plains of India. Curriculum. Science. 107: 1470-1486.
38.Reynolds, W.D., Drury, C.F., Tan, C.S., Fox, C.A., and Yang, X.M. 2009. Use of indicators and pore volume function characteristics to quantify soil physical quality. Geoderma. 152: 252-263.
39.Shahab, H., Emami, H., Haghnia, Gh., and Karimi, A. 2011. Determining most important properties for soil quality indices of agriculture and range lands in a some parts of southern Mashhad. J. Water Soil. 25: 5. 1197-1205.
40.Shukla, M.K., Lal, R., and Ebinger, M. 2006. Determining soil quality indicators by factor analysis. Soil and Tillage Research. 87: 194-204.
41.Sun, B., Zhou, S.L., and Zhao, Q.G. 2003. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma. 115: 85-99.
42.Torbert, H.A., Krueger, E., and Kurtene, D. 2008. Soil quality assessment using fuzzy modeling. International Agrophysics. 22: 365-370.
43.Vasu, D., Singh, S., Ray, S., Tiwary, P., Chandran, P., Nimkar, A., and Anantular, S. 2016. Soil Quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deecan plateau, India. Geoderma. 282: 70-79.
44.Walkley, A., and Black, I.A. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-37.
45.Yanbing, Q., Darilek, J.L., Biao, H., Yongcun, Z., Sun, W., and Gu, Z. 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma. 149: 325-334.
46.Zhang, X.Y., Sui, Y.Y., Zhang, X.D., Meng, K., and Herbert, S.J. 2007. Spatial variability of nutrient properties in black soil of northeast China. Pedosphere. 17: 1. 19-29.