مقایسه توان گیاه‌پالایی سرب از خاک آلوده توسط وتیور و کلم زینتی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد ، گروه علوم خاک، دانشگاه فردوسی مشهد

2 استاد، گروه علوم خاک، دانشگاه فردوسی مشهد،

3 دانش‌آموخته دکتری ، گروه علوم خاک، دانشگاه فردوسی مشهد

چکیده

سابقه و هدف: آلودگی خاک از مهمترین آلودگی‌های محیط زیست، می‌باشد. سرب یکی از فلزات سنگین و آلاینده‌های مهم زیست بوم خشکی است. استفاده از گیاهان برای رفع آلودگی خاک یا گیاه پالایی، روشی مقرون به صرفه است. امروزه با توجه به افزایش آلودگی منابع خاک و مشکلات ناشی از آن، شناسایی گیاهان مفید در این زمینه ضروری به نظر می‌رسد. کارآیی گیاه وتیور و کلم زینتی در جذب سرب بررسی و مقایسه نشده است، بنابراین این پژوهش با هدف مقایسه میزان گیاه پالایی سرب توسط دو گیاه وتیور و کلم زینتی و معرفی گونه بهتر در این زمینه انجام شد.
مواد و روش‌ها: آزمایش در قالب طرح کاملا تصادفی با آرایش فاکتوریل در شرایط گلخانه به اجرا درآمد. تیمارها شامل دو نوع گیاه وتیور (Vetiveria zizanioides ) و کلم زینتی (Brassica oleraceae ) و سه سطح آلودگی خاک به سرب شامل 50، 250 و 500 میلی گرم در کیلوگرم از منبع نیترات سرب، در سه تکرار بودند. پس از اندازه گیری سرب انباشته شده در خاک به روش DTPA ، سرب ریشه و اندام هوایی گیاهان، فاکتور انتقال (انتقال از ریشه به اندام هوایی) و فاکتور تجمع زیستی ریشه (انتقال از خاک به ریشه) نیز اندازه‌گیری شدند. تجزیه و تحلیل داده ها با استفاده از نرم‌افزار JMP و مقایسه میانگین‌ها با روش LSD انجام شد.
یافته‌ها: نتایج تجزیه واریانس داده‌ها نشان داد در ریشه و خاک تاثیر نوع گیاه، سطوح آلودگی خاک و اثر متقابل این دو عامل بر میزان انباشت سرب در سطح یک درصد و در اندام هوایی تاثیر نوع گیاه و سطوح آلودگی خاک در سطح پنج درصد و اثر متقابل این دو عامل در سطح یک درصد معنی‌دار بود. بیشترین انباشت سرب در ریشه و اندام هوایی در تیمار وتیور با سطح آلودگی 250 میلی-گرم سرب بر کیلوگرم خاک اتفاق افتاد و بیشترین انباشت سرب خاک مربوط به تیمار کلم زینتی با سطح 500 میلی‌گرم سرب بر کیلوگرم خاک بود. وتیور در مقایسه با کلم زینتی میزان سرب را در ریشه و اندام هوایی خود به ترتیب 5/3 و 2/1 برابر بیشتر تجمع نمود و انباشت سرب در ریشه وتیور 4 برابر اندام هوایی این گیاه و در ریشه کلم زینتی 5/1 برابر اندام هوایی آن بود. در تمام سطوح آلودگی، فاکتور انتقال در هر دو گیاه ، کمتر از یک و فاکتور تجمع زیستی ریشه وتیور از کلم زینتی بیشتر بود.
نتیجه‌گیری: با وجود توانایی هر دو گیاه در انباشت سرب در ریشه و اندام هوایی خود، وتیور عملکرد بهتری در جذب سرب و کاهش غلظت سرب خاک داشت بنابراین کاربرد آن برای اهداف گیاه پالایی توصیه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison phytoremediation Potential of Pb from Contaminated Soil by Vetiveria zizanioides and Brassica oleraceae

نویسندگان [English]

  • Somaye ۀarazhian 1
  • Hojat Emami 2
  • Amir Fotovat 2
  • elhham Amiri 3
1 Soil science department, Ferdowsi University of Mashhad
2
3 Soil science department, Ferdowsi University of Mashhad
چکیده [English]

Background and Objectives: Soil contamination is one of the most important pollutants in the environment. Lead (Pb) is one of the heavy metals and important pollutant in arid ecosystem. The use of plants to remove contaminated soil or Phytoremediation is an economical method. Todays due to increasing the pullution of soil sources and resultant problems, identification the resistant plant species against soil pollution is essential. Effeciency of Vetiver and Brassica to Pb uptake has not studied and compared, therefore, this study was carried out in order to compare the Phytoremediation capacity of Pb by two plants i.e. Vetiveria zizanioides and Brassica oleraceae, and to indentify the better specie for this purpose.
Materials and Methods: A completely randomized design with factorial arrangement in greenhouse conditions was carried out. Treatments included two types of plants (Vetiveria zizanioides and Brassica oleraceae) and three rates of Pb contamination in soil (50, 250 and 500 mg / kg prepared from lead nitrate) in three replicates. After measuring the amount of Pb in soil by DTPA, the concentration of Pb in root and shoot of plants, Translocation factor (translocation from roots to shoots) and Bio-accumulation factor (translocation from soil to roots) were measured, too. Data analysis was performed using JMP software and comparison of means by LSD method.

Results: The results of analysis of variance showed that the effect of plant type, soil contamination rates and their interaction on accumulation content of lead in root and soil were Significant at p < 0.01, while the effect of soil contamination rate on the shoots of plant was Significant at p < 0.05. The highest accumulation contents of lead in roots and shoots were found in Vetiver plant containing 250 mg / kg of soil pollution rate treatment. Also, the highest amount of Pb accumulation in soil was related to Brassica containing 500 mg/kg of soil treatment. Vetiver in root and shoots accumulated Pb 3.5 and 2.1 times more than Brassica, respectively. In addition, the accumulation content of Pb in the roots of Vetiver was 4 times higher than its shoots, while the concentration of Pb in roots of Brassica was 1.5 times greater than its shoots. Translocation factor in both plant was less than 1, while bio-accumulation factor of Vetiver was greater than that of Brassica in all Pollution rates.
Conclusion: Despite the ability of both plants to accumulate lead in their roots and shoots, Vetiver had the better performance in lead uptake from soil and reduced lead amount in soil, so its application is recommended for Phytoremediation purposes.

کلیدواژه‌ها [English]

  • Soil contamination
  • Translocation factor
  • Phytoremediation
1.Abdollahi, S., and Golchin, A. 2018. Evaluate ability of uptake and translocation of lead in three varieties of Cabbage. Iran. J. Soil Water Resour.49: 1. 145-158. (In Persian)
2.Aghasifar, H., Sarcheshmepour, M., and Safari, V.R. 2011. Study on possibility of using of Helianthus annuus and Brassica oleracea for Phytoremediation of polluted soil to Cu. The 5th conference & exhibition on Environmental Engineering. Tehran, University Tehran, Faculty of Environment. November 21-22 (In Persian)
3.Alloway, B.J. 1995. Heavy metals in soils. 2nd (ed.), Blackie Academic and professional. London, England. Pp: 38-303.
4.Almeida, A.F., Valle, A.A., Mielke, M.S., Gomes, F.P., and Braz, J. 2007. Tolerance and prospection of phytoremediator woodg species of Cd, Pb, Cu and Cr. Plant Physiology. 19: 83-98.
5.Altagic, J., and Secerov-Fiser, V. 2005. Interspecific hybridization and cytogenetic studies in ornamental sunflower breeding. Experimental Agriculture. 45: 93-97.
6.Al-Shehbaz, I.A., Beilstein, M.A., and Kellogg, E.A. 2006. Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Systematic & Evollution. 259: 89-120.
7.Anderson, C., Brooks, R., Chiarucci, A. and Lacoste, C. 1999. Phytomining for nickel, thallium and gold. J. Geochem. Explor. 67: 407-415.
8.Arias, J.A., Peralta-Videa, J.R., Ellzey, J.T., Ren, M., Viveros, M.N., and Gardea-Torresdey, J.L. 2010. Effects of Glomus deserticola inoculation on Prosopis: enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environmental & Experimental Botany. 68: 2. 139-148.
9.Attanayake, C.P., Hettiarachchi, G.M., Harms, A., Presley, D., Martin, S., and Pierzynski, G.M. 2014. Field evaluations on soil plant transfer of lead from an urban garden soil. J. Environ. Qual.43: 2. 475-87.
10.Baker, A.J.M., and Walker, P.L. 1990. Ecophysiology of metal uptake by tolerant plants, in: heavy metal tolerance in plants - evolutionary aspects. Eds. Shaw, A.J. CRC Press, Boca Raton, FL. Pp: 155-177.
11.Balabanova, B., Stafilov, T., and Bačeva, K. 2015. Bioavailability and bioaccumulation characterization of essential and heavy metals contents in R. acetosa, S. oleracea and U. dioica from copper polluted and referent areas. J. Environ. Health Sci. Engin. 13: 2. 1-13.
12.Bouyoucos, C.J. 1962. Hydrometer method improved for making particle size analysis of soil. Agronomy. 54: 464-465.
13.Boyd, R.S., and Barbour, M.G. 1986. Relative salt tolerance of Cakile edentula (Brassicaceae) from lacustrine and marine beaches. Amer. J. Bot.73: 236-241.
14.Bremner, J.M. 1996. Nitrogen-total.P 1085-1122. In: D.L. Sparks (ed.), Method of soil analysis.  Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA.
15.Chen, Y., Shen, Z., and Li, X. 2004.The use of Vetiver grass (Vetiveria zizanioides) in the hytoremediation of soils contaminated with heavy metals. Appllied Geochemistry. 19: 1553-1565.
16.Cherati Araei, A., and Khanlarian Khatiri, M. 2008. The Effects of Lead on Germination, Protein and Proline Contents and Index of Tolerance in Two Varieties of Oilseed Rape (Brassica napus L.). J. Environ. Sci. 5: 3. 41-52.
17.Chollet, A.L., and Brock, J.W. 2008. Evaluation of lead content of Kale (Brassica oleraceae) commercially-available in Buncombe County. North Carolina. J. North Carolina Acad. Sci. 124: 1. 23-25.
18.Czech, A., Pawlik, M., and Rusinek, E. 2012. Contents of heavy metals, nitrates and nitrites in Cabbage. Polish J. Environ. Stud. 21: 2. 321-329.
19.Dauda, M.K., Variatha, M.K., Shafaqat, A., Najeeba, U., Jamilb, M., Hayat, Y., Dawooda, M., Khand, M.I., Zaffar, M., Cheemad, S.A., Tonga, X.H., and Zhua, S. 2009. Cadmium-induced ultra-morphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative.J. Hazard. Mater. 168: 614-625.
20.Defoe, P.P., Hettiarachchi, G.M., Benedict, C., and Martin, S. 2014. Safety of gardening on leadand arsenic contaminated brownfields. J. Environ. Qual. 43: 6. 2064-2078.
21.Delorme, T.A., Gagliardi, J.V., Aanle, J.S., and Chaney, R.L. 2001. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can. J. Microbiol. 47: 8. 773-776.
22.Dindarlou, A., Hedayat, M., Hosseini, A. 2016. Evaluation of Absorption of Cd, Zn, Pb, Ni, Fe, and Cu present in hospital wastewater by Phytotermidiation using Vetiver grass. J. Water Wastewater. 27: 1. 57-66. (In Persian)
23.Gardea-Torresdey, J.L., Peraha-Videa, J.R., Rosa, G.D.L., and Parsons, J.G. 2005. Phytoremediation of heavy metals and study of the metal coordination by x-ray absorption spectroscopy. Coordination Chemistry Reviews, 24: 1797-1810.24.
24.Giachetti, G., and Sebastiani, L.2006. Metal accumulation in Poplar plant grown with industrial waste. Chemosphere. 64: 446-454.
25.Ghaderian, S.M., Hemmat, G.R., Reeves, R.D., and Baker, A.J.M. 2007. Accumulation of lead and zinc by plants colonizing a metal mining area in Central Iran. J. Appl. Bot. Food Qual. 18: 145-150.
26.Golchin, A., Atashnama, K., and Takasi, M. 2006. Investigate lead distribution in different parts of sunflower and
Canola as producer oil plants. Publications Agriculture and Natural resources. Tehran University. Pp: 305-306. (In Persian)
27.Greenfield, J.C. 1989. Vetiver grass: The ideal plant for vegetative soil and moisture conservation. ASTAG - The World Bank, Washington DC, USA. 281p.
28.Islam, M.P., Khairul Hassan Bhuiyan, M., and Hossain, Z. 2008. Vetiver grass as a potential resource for rural development in Bangladesh. Agric. Engin. Inter. CIGR J. 5: X. 1-18.
29.Jiang, W., and Liu, D. 2010. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biolology. 10: 40-40.
30.Jones, J.B. 2001. Laboratory Guide for Conduction Soil Tests and Plant Analysis. U. S: CRC press LLC. 384p.
31.Joonki, Y., Xinde, C., Qixing, Z., and Lena, Q. 2006. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Fliria site. Science the Total Environment. 368: 456-464.
32.Kadukova, J., and Kalogerakis, N. 2007. Lead accumulation from non-saline and saline environment by Tamarix smyrnesis Bunge. Eurp. J. Soil Boil.43: 216-223.
33.Khudsar, T., Uzzafar, M., Soh, W.Y., and Iqbal, M. 2000. Morphological and anatomical variations of Cajanus cajan (Linn. Huth) raised in cadmium rich soil. Plant Biology. 43: 149-157.
34.Kuper, H., Zhao, F., and McGrath, S. 1999. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. J. Plant Physiol. 119: 305-311.
35.Ladan, Sh. 2010. The study of ability Phytoremediation of Contaminated Soils to Arsenic by Allium Fistulosum and Brassica oleracea. M. Sc. thesis of soil science. Faculty of Agriculture. Tarbiat Modares University. Tehran. Iran. (In Persian)
36.Lai, H.Y., Juang, K.W., and Chen, Z.S. 2010. Large-area experiment on uptake of metals by twelve plants growing in soil contaminated with multiple metals. Inter. J. Phytoremed. 12: 785-797.
37.Li, M.S., Luo, Y.P., and Su, Z.Y. 2007. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi,South China. Environmental Pollution. 147: 168-175.
38.Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Amer. J. 42: 421-428.
39.Loeppert, R.H., and Suarez, D.L. 1996. Carbonate and gypsum, P 437-474. In: D.L. Sparks, Page, A.L., Hemke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., and Sumner, M.E. (eds.), Methods of Soil Analysis, Part 3 Chemical Methods.Soil Science Society of America Inc., Madison, WI, USA.
40.Maestri, E., Marmiroli, M., Visioli, G., and Marmiroli, N. 2010. Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environmental & Experimental Botany. 68: 1. 1-13.
41.Malik, R.S., Kala, R., Gupta, S.P., and Dahiya, S.S. 2003. Background level of micronutrients and heavy metals in sewage-irrigated soils and crops in Haryana. Ind. J. Agric. Sci. 74: 156-158.
42.Mansoorian, A., Vaziri, A., Zamani,M., and Heidaryan Naeini, F. 2017. Phytoremediation of the soils contaminated with cyanide by Vetiveria zizanioides. Health & Environment.10: 3. 411-420. (In Persian)
43.Mathialagan, T., and Viraraghavan, T. 2002. Adsorption of cadmium from aqueous solutions by perlite. J. Hazard. Matetr. 94: 291-303.
44.Massimo Maffei, 2002. Vetiveria, the Genus Vetiveria, Taylors and Francis, 250p.
45.Mcfaralane, G.R., Koller, C.E., and Blomberg, S.P. 2007. Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere. 69: 1454-1464.
46.McGrath, S., Zhao, F., and Lombi, E. 2002. Phytoremedition of metals, metalloids and radionuclides. Advances in Agronomy. 75: 1-56.
47.McGrath, S.P., and Zhao, F.J. 2003. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology. 14: 277-282.
48.Megdiche, W., Ben-Amor, N., and Bebez, A. 2007. Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiology Plantarum. 29: 375-384.
49.Mellem, J.J., Baijnath, H., and Odhav, B. 2009. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. J. Environ. Sci. Health. 44: 568-575.
50.Memon, A., Aktoprakligil, D., Ozdemir, A., and Vertii, A. 2001. Heavy metal accumulation and detoxification mechanisms in plants. Turk. J. Bot.25: 111-121.
51.Meyers, D., Auchterlonie, G.J., Webb, R.I., and Wood, B. 2008. Uptake and localization of lead in the root system
of Brassica juncea. Environmental Pollution. 53: 2. 323-332.
52.Mohajer, R., Salehi, M.H., and Mohammadi, J. 2014. Lead and cadmium concentration in agricultural crops (lettuce, cabbage, Beetroot and Onion) of Isfahan Province, Iran. Iran. J. Health Environ. 7: 1. 1-10. (In Persian)
53.Motahari, M., and Farzamisepehr, M. 2015. The role of citric acid in the absorption of cadmium from the soil in brassica oleracea. The Third National Conference of modern Topic in Agriculture. Saveh. Islamic Azad University-Saveh Branch. December 17.
54.Mousavi, R., Mohseni, M., and Dimiadi, A.A. 2012. Study on use of vetiver system for removal water and soil contamination. The first National Conference on Phytoremediation. Kerman. February 16. (In Persian)
55.Ndeda, L.A., and Manohar, S. 2014. Bio Concentration Factor and Translocation Ability of Heavy Metals within Different Habitats of Hydrophytes in Nairobi Dam, Kenya. IOSR J. Environ. Sci. Toxicol. Food Technol. 8: 5. 42-45.
56.Olowoyo, J.O., Heerden, E., Fischer, J.L., and Baker, C. 2010. Trace metals in soil and leaves of Jacaranda mimosifolia in Tshwane area, South Africa. Atmosphereic Environment.
44: 1826-1830.
57.Osma, E., Serin, M., Leblebic, Z., and Aksoy, A. 2012. Heavy metals accumulation in some vegetables and soils in Istanbul. Ekoloji. 21: 82. 1-8.
58.Pachura, P., Ociepa-Kubicka, A.,and Skowron Grabowska, B. 2016. Assessment of the availability of heavy metals to plants based on the translocation index and the bioaccumulation factor. Desalination & Water Treatment. 57: 3. 1469-1477.
59.Parsadoost, F., Bahreininejad, B., Safarisanjani, A., and Kaboli, M. 2007. Phytoremediation of lead with native rangeland plants in Irankooh polluted soils. Pajoohesh & Sazandegi. 75: 54-63.
60.Parta, M., Bhowmik, N., Bandopadhyay B., and Sharma, A.S. 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental & Experimental Bontany. 52: 199-223.
61.Przedpelska, E., and Wierzbicka, M. 2007. Arabidopsis arenosa (Brassicaceae) from leadzinc waste heap in southern Poland – a plant with high tolerance to heavy metals. Plant & Soil. 299: 43-53.
62.Ramos, I., Esteban, E., Lucena, J.J., and Ga´rate, A. 2002. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science. 162: 761-767.
63.Rezvani, M., and Zaefarian, F. 2011. Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. Austr. J. Agric. Engin. 2: 4. 114-119.
64.Rhoades, J.D. 1996. Salinity: electrical conductivity and and total dissolved solids. P 417-436. In: D.L. Sparks, Page, A.L., Hemke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., and Sumner, M.E. (eds.), Method of soil analysis, part 3 chemical methods. Soil Science Society of America Inc., Madison, WI, USA.
65.Sharma, P., and Dubey, R.S.H.2005. Lead toxicity in Plants. Plant Physiology. 17: 35-52.
66.Shukla, S.R., and Pai, R.S., 2005. Adsorption of Cu (II), Ni (II) and Zn (II) on modified jute fibers. Bioresources Technology. 96: 1430-1438.
67.Sinha, P., Dube, B., Srivastava, P., and Chatterjee, C. 2006. Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere. 65: 4. 651-656.
68.Sinha, S., Pandey, K., Gupta, A.K., and Bhatt, K. 2005. Accumulation of metals in vegetables and crops grown in the area irrigated with river water. Bulletin of Environmental Contamination & Toxicology. 74: 1. 210-218.
69.Soltani, F., Ghorbanli, M., and Manouchehri-Kalantari, K.H. 2006. Effect of cadmium on photosynthetic pigments, sugars and malondealdehyde content in Brassica napus L. Iran. J. Biol. 2: 136-145. (In Persian)
70.Tafvizi, M., and Motesharezadeh, B. 2014. Effects of Lead on Iron, Manganese, and Zinc Concentrations in Different Varieties of Maize (Zea mays). Communications in Soil Science & Plant Analysis. 45: 1853-1865.
71.Tiwari, S., Kumari, B., and Singh, S.N. 2008. Evaluation of metal mobility/ immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps. Bioresource Technology. 99: 1305-1310.
72.Usero, J., Morillo, J., and Gracia, I. 2005. Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere. 59: 1175-1181.
73.Walkley, A., and Black, I.A. 1934. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science.37: 29-38. 
74.Warwick, S.I. 2011. Brassicaceae in agriculture. In: Schmidt R, Bancroft I (ed.) Genetics and genomics of the Brassicaceae. Plant genetics and genomics: crops and models, Springer, New York. 9: 33-65.
75.Wenzel, W.W. 2009. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant & Soil. 321: 385408.
76.Yan-de, J., Zhen-Li, H., and Xiao, Y. 2007. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J. Zhejiang Univ. Sci. B. 8: 3. 197-207.
77.Yong, W., and Qian Y.X. 1993. Correlation of lipids, lipoproteins, lipid peroxide products and metals with coronary heart disease. Chine. Med. Sci. J. 106: 13. 167-170.