اثر سودوموناس فلورسنت دارای فعالیت ACC دآمیناز بر غلظت عناصر غذایی کم‌نیاز، وزن ریشه و عملکرد بیولوژیک برنج (Oryza sativa L.) تحت تنش شوری

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته دکتری ،گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 استاد مؤسسه تحقیقات خاک و آب کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی

3 استادیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی مازندران،

4 مربی پژوهش بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی مازندران

چکیده

سابقه و هدف: شـوری خاک و آب آبیاری از عمـده‌تـرین عوامـل محدودکننـده رشـد گیاهان و تولید محصول در کشاورزی محسوب می‌شود. شوری آب و خاک غالباً از طریق افزایش فشار اسمزی محلول خاک، سمیت ویژه یون‌هایی چون سدیم و کلر و همچنین عدم توازن تغذیه‌ای، رشد گیاهان را محدود می‌کند. علاوه بر این، تنش شوری از طریق افزایش سطح هورمون اتیلن گیاه موجب کاهش رشد ریشه و رشد عمومی گیاه می‌شود. یکی از سازوکارهای مقابله با شوری، تلقیح بذر و یا ریشه گیاهان زراعی با باکتری‌ها محرک رشد گیاه می‌باشد.
مواد و روش‌ها: به‌منظور بررسی تأثیر چهار سویه از باکتری‌های سودوموناس فلورسنت بر غلظت عناصر غذایی کم‌نیاز تحت شرایط آبیاری با آب‌شور در برنج آزمایش گلدانی به‌صورت فاکتوریل، در قالب طرح پایه کاملاً تصادفی در چهار تکرار انجام شد. فاکتور اول شامل پنج سطح شوری آب آبیاری (7/0، 4/1، 8/2، 2/4، 6/5 دسی‌زیمنس بر ‌متر از منبع آب دریا) و فاکتور دوم شامل چهار زاد مایه (سودوموناس پوتیدا 4، سودوموناس پوتیدا 11، سودوموناس پوتیدا 108، سودوموناس فلورسنس 169) و یک تیمار بدون تلقیح بود. ریشه نشاء برنج رقم طارم پس از تلقیح با سویه‌های موردنظر در گلدان‌ها کاشته شدند. آبیاری با تیمارهای مختلف آب‌شور در طول دوره رشد گیاه در حد اشباع انجام گردید. جهت تعیین غلظت عناصر غذایی منگنز، آهن، روی و مس نمونه‌برگ تهیه شد. پس از برداشت دانه برای تعیین میزان عناصر غذایی، نمونه بذر به آزمایشگاه منتقل گردید.
یافته‌ها: نتایج نشان داد با افزایش شوری آب آبیاری، غلظت کلیه عناصر غذایی کم‌نیاز در برگ و دانه برنج به‌طور معنی‌داری کاهش یافت. تلقیح برنج با سویه‌های مختلف باکتری‌های سودوموناس فلورسنس و پوتیدا در شرایط آبیاری با آب‌شور بر جذب عناصر غذایی کم‌نیاز در برنج مؤثر بود و باعث افزایش معنی‌دار غلظت این عناصر نسبت به تیمارهای تلقیح نشده گردید. همچنین نتایج نشان داد که اثر متقابل تلقیح باکتری و سطوح شوری بر غلظت مس و آهن برگ و همچنین بر غلظت مس و منگنز دانه در سطح احتمال یک درصد معنی‌دار شد و در تمامی سطوح شوری، تیمارهای تلقیح شده با سویه سودوموناس فلورسنس 169 بیشترین غلظت آهن برگ را دارا بود.
نتیجه‌گیری: تلقیح برنج با سویه‌های مختلف باکتری‌های سودوموناس فلورسنس و پوتیدا در شرایط آبیاری با آب‌شور در تخفیف اثرات شوری در شرایط گلدانی مؤثر بود و باعث افزایش غلظت عناصر غذایی کم نیاز نسبت به سطح بدون تلقیح گردید. بنابراین در شرایط آبیاری با آب شور می‌توان از سویه‌های سودوموناس پوتیدا 11، سودوموناس پوتیدا 108، سودوموناس فلورسنس 169 به‌عنوان باکتری‌های محرک رشد گیاه در کاهش اثرات شوری استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of fluorescent pseudomonads with ACC deaminase activity on micronutrients concentration, root weight and biological yield of rice (Oryza sativa L.) under salinity stress

نویسندگان [English]

  • sareh Rajabi Agereh 1
  • kazem khavazi 2
  • mahmoud reza Ramezanpoure 3
  • mehran Afzali 4
1 Dept. of Soil Science, Mazandaran Agricultural and Natural Resources Research and Education Center
2 Dept. of Soil Science, Soil and Water Research Institute
3 Dept. of Soil Science, Mazandaran Agricultural and Natural Resources Research and Education center
4 mehran_afzalichali@yahoo.com
چکیده [English]

Background and objectives: Soil and water salinity is the major limiting factors for plant growth and crop production. Water and soil salinity almost limit plant growth through increasing osmotic pressure, specific toxicity of some ions such as sodium and color, and nutritional imbalance. In addition to, salinity stress reduces root and plant growth via increasing hormone level. One of the strategies to deal with salinity is inoculation of seeds with plant growth-promoting rhizobacteria (PGPR).
Background and objectives: Soil and water salinity is the major limiting factors for plant growth and crop production. Water and soil salinity almost limit plant growth through increasing osmotic pressure, specific toxicity of some ions such as sodium and color, and nutritional imbalance. In addition to, salinity stress reduces root and plant growth via increasing hormone level. One of the strategies to deal with salinity is inoculation of seeds with plant growth-promoting rhizobacteria (PGPR).
Materials and methods: The effect of four strains of Fluorescent pseudomonads on uptake of micronutrients in rice was studied under saline irrigation. Greenhouse tests were performed as factorial experiment in a completely randomized design with four replications. First factor was salinity water in five levels (0.7, 1.4, 2.8, 4.2 and 5.6 ds/m originated from sea water) and the second factor was pseudomonads strains (Pseudomonas putida 4, 11 and 108, and Pseudomonas fluorescens 169 and a non-inoculated control). Root of rice (cv. Tarom) transplants was inoculated with mentined strains before planting in pots. During growth period, the pots were irrigated with the abovementioned saline water upto saturation point. In the flowering stage, flag leaf samples were collected to determine Manganese, Iron, Zinc and copper concentration. The content of micronutrients in seed samples was also measured.
Results: The results showed that increasing the salinity level significantly reduced all microelements contents in the leaf and seed. Rice inoculation with different strains of P. fluorescens and P. putida affected on nutrients concentrations under saline irrigation and it increased content of the elements compared to control. Also, the interaction of Pseudomonas strain × salinity level had a significant effect on copper and iron concentration in leaf, and copper and Manganese concentration in seed (P < 0.01). At all salinity levels, maximum iron concentration observed by inoculation of roots with P.fluorescent 169.
Conclusion: Inoculation of rice with various strains of bacteria Fluorescent pseudomonads and putida affected the concentration of micronutrients under saline water irrigation in rice and caused to increase these elements more than control. Therefore, in saline conditions, using strains of Fluorescent Pseudomonas can be growth up of rice plant.

کلیدواژه‌ها [English]

  • Plant Growth Promoting bacteria
  • Rice
  • Salinity stress
  • Elements nutrient
1.Abbas Zadeh, P., Saleh Rastin, N., Asadi Rahmani, H., Khavazi, K., Soltani, A., Shoary-Nejati, A., and Miransari, M. 2010. Plant growth-promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiologiae Plantarum. 32: 2. 281-288.
2.Ahmadi, K., Ebadzadeh, H., Abdshah, H., Kazemian, A., and Rafiee, M. 2018. Agricultural statistics. Ministry of Agriculture, Department of Planning and Economy, Information and Communication Technology Center, Volume I, 116p.
(In Persian)
3.Asadi, R., Rezai, M., Yousefi Falakdeha, A., and Ashraf Zadeh, A. 2009. Possible to predict the effects of salinity Water on the performance of high-yielding rice varieties. In: 12th Iranian National Committee on Irrigation and Drainage Conference, Pp: 455-462. (In Persian)
4.Bouizgarne, B. 2013. Bacteria for Plant Growth Promotion and Disease Management. P 15-47. In: D.K. Maheshwari (eds.) Bacteria in Agrobiology: Disease Management. Chapter 2. Springer-Verlag Berlin Heidelberg.
5.Cottenie, A. 1980. Methods of plant analysis, Soil and plant testing: FAO Soils Bulletin 38/2. 120p.
6.DuNing, X., Lix, Y., Song, D., and Yang, G. 2007. Temporal and spatial dynamical simulation of groundwater characteristics in Minqin Oasis. Science in China Series D: Earth Sciences. 2: 261-273.
7.Egamberdieva, D., Kamilova, F., Validov, S., Gafurova, L., Kucharova, Z., and Lugtenberg, B. 2008. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environmental Microbiology. 10: 1-9.
8.Frankenberger, W.T., and Arshad, M. 1995. Phytohormones in soils: production and function. Marcel Dekker, Inc., New York. 520p.
9.Grichko, V.P., and Glick, B.R. 2001. Ethylene and flooding stress in plants. Plant Physiology and Biochemistry.39: 1-9.
10.Glick, B.R. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnology advances. 28: 367-374.
11.IWMI. 2003. Water productivity in agriculture: Limits and Opportunities for Improvements, Press Release: New research findings offer hope for the world water crisis, Nairobi November 3.
12.Jafari, S., Charm, M., Enayati Zamir, N., and Motamedi, H. 2015. Effect of two strain bacteria tolerance to salinity on barley growth in different soil salinity levels. J. Soil Biol. 2: 2. 187-196.(In Persian)
13.Jafari Rad, S., Zavareh, M., Khaledian, M., and Rezaeai, M. 2013. Evaluation of Resistance of Different Rice Genotypes two salinity water irrigation. The first national conference on agricultural water management, soil and water research institute. (In Persian)
14.Jalili, F., Khavazi, K., Pazira, E., Nejati, A., Rahmani, H.A., Sadaghiani, H.R., and Miransari, M. 2009. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J. Plant Physiol. 166: 667-674.
15.Kapulnik, Y., Okon, Y., and Henis, Y. 1985. Changes in root morphology of wheat caused by Azospirillum inoculation. Can. J. Microbiol. 31: 881-887.
16.Kukreja, S., Nandwal, A., Kumar, N., Sharma, S., Unvi, V., and Sharma, P. 2005. Plant water Status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicerarietinum roots as affected by salinity. Biologia Plantarum. 49: 305-308.
17.Kohler, J., Hernandez, J.A., Caravaca, F., and Roldan, A. 2009. Induction of antioxidantenzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany. 65: 245-252.
18.Liu, X.M., and Zhang, H. 2015. The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front Plant Science. 6: 774. 1-15.
19.Lixia, Y., Zhansheng, W., Yuanyuan, Z., Imdad, K., and Chun, L. 2010. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Europ. J. Soil Biol. 46: 49-54.
20.Marschner, H., and Romhold, V. 1994. Strategies of plants for acquisition of iron. Plant Soil. 165: 261-274.
21.Marschner, P., and Rengel, Z. 2007. Contributions of Rhizosphere Interactions to Soil Biological Fertility. P 81-98. In: K. Lynette, L.K. Abbott, and D.V. Murphy (eds.) Soil Biological Fertility: A Key to Sustainable Land Use in Agriculture. Kluwer Academic Publishers.
22.Mayak, S., Tirosh, T., and Glick, B. R. 2004. Plant growth-promoting bacteria that confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry. 42: 565-572.
23.Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell and Environment. 25: 239-250.24.Navabian, M., and Aghajani, M.2012. Evaluating the effect of fresh and saline water irrigation management on Hashemi rice yield. Science and technology of Agriculture and Nature (water and soil science). 16: 60. 45-55. (In Persian)
25.Numan, M., Bashir, S., Khan, K., Mumtaz, R., Shinwari, Z., Khan, A L., Khan, A., and AL-Harrasi, A. 2018. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research. 209: 21-32.
26.Patten, C.L., and Glick, B.R. 2002. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied Environmental Microbiology. 48: 3795-3801.
27.Penrose, M., and Glick, B.R. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth- promoting rhizobacteria. Physiology of Plant. 118: 10-15.
28.Rameesha, A., Sumaira, R., Kashif, A., Muhammad, B., Muhammad, S., Fathia, M., and Tahir, N. 2019. Halotolerant PGPR: A hope for cultivation of saline soils. J. King Saud Univ. Sci.31: 1195-1201.
29.Sadat, A., Savaghebi, G.H., Rejali, F., Farahbakhsh, M., Khavazi, K., and shirmardi, M. 2010. Effects of some Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria on the growth and yield indices of two wheat varieties in a saline soil. J. Water Soil. 24: 1. 53-62. (In Persian)
30.Sayyed, R.Z., Reddy, M.S., Gangurde, N.S., Chincholkar, S.B., and Patel, P.R. 2012. Siderophore Producing PGPR for Crop Nutrition and Phytopathogen Suppression. P 449-471. In: D.K. Maheshwari (ed.) Bacteria in Agrobiology: Disease Management. Springer, London.
31.Scavino, AF., and Pedraza, RO. 2013. The role of siderophores in plant growth-promoting bacteria. P 265-285. In: D. Maheshwari, M. Saraf, and A. Aeron (eds) Bacteria in Agrobiology: Crop Productivity. Springer, Berlin, Heidelberg.
32.Shahbaz, M., and Ashraf, M. 2013. Improving salinity tolerance in cereals, Critical Reviews in Plant Sciences.32: 4. 237-249.
33.Shirmardi, M., Savaghebi, G.R., Khavazi, K., Akbarzadeh, A., Farahbakhsh, M., Rejali, F., and Sadat, A. 2010. Effect of microbial inoculants on uptake of nutrient elements in two cultivars of sunflower (Helianthus annuus L.) in saline soils. Notulae Scientia Biologicae. 2: 57-66.
34.Shahid, M., Mahmood, F., Hussain, S., Shahzad, T., Haider, M.Z., Noman, M., Mushtaq, A., Fatima, Q., Ahmed, T., and Mustafa, G. 2018a. Enzymatic detoxification of azodyes by a multifarious Bacillus sp. strain MR-1/2-bearing plant growth-promoting characteristic. 3 Biotech. 8: 425. 1-12.
35.Shahid, M., Akram, M.S., Khan, M.A., Zubair, M., Shah, S.M., Ismail, M., Shabir, G., Basheer, S., Aslam, K., and Tariq, M. 2018b. A phytobeneficial strainPlanomicrobiumsp. MSSA-10 triggered oxidative stress responsive mechanisms and regulatedthe growth of pea plants under induced saline environment. J. Appl. Microbiol.124: 1566-1579.
36.Stougaard, J. 2000. Regulators and regulation of legume root nodule development. Plant Physiology. 124: 531-540.
37.Tariq, M., Hameed, S., Malik, K.A., and Hafeez, FY. 2007. Plant root associated bacteria for zinc mobilization in rice. Pak. J. Bot. 39: 1. 245-253.
38.Yasmeen, T., Tariq, M., Iqbal, S., Saleem Arif, M., Riaz, M., Shahzad, S., Noman, M., and Li, T. 2019. Ameliorative capability of Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) against salt stress in plant. P 1-14. In: M. Hasanuzzaman, K. Hakeem, K. Nahar, and H. Alharby (eds.) Plant Abiotic Stress Tolerance. Springer, Cham.
39.Yehuda, Z., Shenker, M., Romheld, V., Marschner, H., hadar, Y., and Chen, Y. 1996. The role of ligand exchange in the uptake of iron from microbial siderophores by garmineous plants. Plant Physiology. 112: 1273-1280.
40.Yu, J., Li, Y., Han, G., Zhou, D.,
Fu, Y., Wang, G., Ning, K., Wu, H.,and Wang, J. 2014. The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environmental Earth Sciences. 72: 589-599.
41.Zabihi, H., Savaghebi, G., Khavazi, K., Ganjali, A., and Miransari, M. 2011. Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiologiae Plantarum. 33: 145-152.
42.Zahir, A.Z., Ghani, U., Naveed,M., Nadeem, S.M., and Asghar, H.N.2009. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC- deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Archives Microbiology. 191: 415-424.