1.Adhikari, K., Owens, P.R., Ashworth, A.J., Sauer, T.J., Libohova, Z., Richter, J.L., and Miller, D.M. 2018. Topographic controls on soil nutrient variations in a silvopasture system. Agrosystems, Geosciences & Environment. 1: 1. 1-15.
2.Birth, G.S., and McVey, G.R. 1968. Measuring the color of growing turf with a reflectance spectrophotometer. Agronomy Journal. 60: 6. 640-643.
3.Bostani, A., Salahedin, M., Rahman, M.M., and Namdar Khojasteh, D. 2017. Spatial mapping of soil properties using geostatistical methods in the Ghazvin Plains of Iran. Modern Applied Science. 11: 23-37.
4.Breiman, L. 2001. Random forests. Machine learning. 45: 1. 5-32.
5.Breiman, L., and Cutler, A. 2004. Random Forests. Department of Statistics, University of Berkeley.
6.Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., and Edwards Jr, T.C. 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma. 239-240: 68-83.
7.Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Novak, J.M., Turco, R.F., and Konopka, A.E. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society American Journal. 58: 5. 1501-1511.
8.Ceddia, M.B., Vieira, S.R., Villela, A.L.O., Mota, L.D.S., Anjos, L.H.C.D., and Carvalho, D.F.D. 2009. Topography and spatial variability of soil physical properties. Scientia Agricola.66: 3. 338-352.
9.Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., and Munkemuller, T. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 36: 1. 27-46.
10.Efron, B. 1979. Bootstrap methods: Another look at the jackknife. The Annals of Statistics. 7: 1. 1-26.
11.ESRI, 2011. ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, CA.
12.Falahatkar, S., Hosseini, S.M., Ayoubi, S., and Salmanmahiny, A. 2016. Predicting soil organic carbon density using auxiliary environmental variables in northern Iran. Archives of Agronomy and Soil Science. 62: 3. 375-393.
13.Flynn, T., de Clercq, W., Rozanov, A., and Clarke, C. 2019. High-resolution digital soil mapping of multiple soil properties: an alternative to the traditional field survey. South African Journal of Plant and Soil. pp. 237-247.
14.Gee, G.W., and Bauder, J.W. 1986. Particle-size analysis .Methods of soil analysis: Part 1- Physical and mineralogical methods. methods of soil analysis. pp. 383-411.
15.Genuer, R., Poggi, J.M., and Tuleau-Malot, C. 2010. Variable selection using random forests. Pattern Recognition Letters, 31: 14. 2225-2236.
16.Gitelson, A.A., Kaufman, Y.J., and Merzlyak, M.N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment. 58: 3. 289-298.
17.Golmohamadi, F., Nabiollahi, K., Taghizadeh-Mehrjardi, R., and Davari, M. 2017. Digital mapping of soil erodibility (Case study: Dehgolan, Kurdistan province). Journal of Water and Soil Conservation. 24: 87-103.
18.Grunwald, S. 2009. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152: 195-207.
19.Guo, Z., Adhikari, K., Chellasamy M., Greve, M.B., Owens, P.R., and Greve, M.H. 2019. Selection of terrain attributes and its scale dependency on soil organic carbon prediction. Geoderma. 340: 303-312.
20.Hartemink, A.E., McBratney, A., and Mendonca-Santos, M.D.L. 2008. Digital Soil Mapping Technologies for Countries with Sparse Data Infrastructures. Digital Soil Mapping with Limited Data Springer. pp. 15-30.
21.Hassani Pak, A.A. 2013. Geostatistical. University of Tehran press. (Translated in Persian)
22.Hook, P.B., and Burke, I.C. 2000. Biogeochemistry in a shortgrass landscape: control by topography, soil texture, and microclimate. Ecology.81: 10. 2686-2703.
23.Huete, A.R. 1988. Soil Adjusted Vegetation Index (SAVI). Remote Sensing of Environment. 25: 295-309.
24.Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., and Ferreira, L.G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment. 83: 195-213.
25.Jafari, M., Asgari, M., Moazami, M., Biniaz, M., and Tahmores, M. 2008. Spatial variation of some soil properties using geostatistical methods, Research and Construction in Agriculture and Horticulture. 80: 177-185. (In Persian)
26.Jiachun, S., Hazin, W., Jianming, X., Jinjun, W., Xingmei, L., Haiping, Z., and Shunlan, J. 2006. Spatial distribution of heavy metal in soil: A case of Changing, China. Environmental Geology. 10: 245-264.
27.Johnson, N., Ravnborg, H.M., Westermann, O., and Probst, K.2002. User participation in watershed management and research. Water policy. 3: 6. 507-520.
28.Junior, L.A.Z., Lana, R.M.Q., and Guimaraes, E.C. 2007. Variabilidade espacial do pH, teores de matéria organica e micronutrients em profundities de amostragem num Latossolo Vermelho sob semeadura direta. Ciência Rural. 37: 4. 1000-1007.
29.Keskin, H., Grunwald S., and Harris, W.G. 2019. Digital mapping of soil carbon fractions with machine learning. Geoderma. 339: 40-58.
30.Kidd, D., Webb, M., Malone, B., Minasny, B., and McBratney, A. 2015. Eighty-metre resolution 3D soil-attribute maps for Tasmania, Australia. Soil Research. 53: 8. 932-955.
31.Liu, J., Shi, B., Jiang, H., Bae, S., and Huang, H. 2009. Improvement of water-stability of clay aggregates admixed with aqueous polymer soil stabilizers. Catena. 77: 3. 175-179.
32.Lin, H. 2010. Earth's critical zone and hydropedology: concepts, characteristics, and advances. Hydrology and Earth System Sciences. 14: 25-45.
33.Ma, Y., Minasny, B., and Wu, Ch. 2017. Mapping key soil properties to support agricultural production in Eastern China. Geoderma Regional. 10: 144-153.
34.Mahmoudabadi, E., Karimi, A., Haghnia, G.H., and Sepehr, A. 2017. Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran. Environmental Monitoring and Assessment. 189: 10. 500.
35.Malone, B.P., McBratney, A., Minasny, B., and Laslett, G. 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma. 154: 138-152.
36.McBratney, A.B., Odeh, I.O., Bishop, T.F., Dunbar, M.S., and Shatar, T.M. 2000. An overview of pedometric techniques for use in soil survey. Geoderma. 97: 3-4. 293-327.
37.McBratney, A.B., Mendonça-Santos, M.L., Minasny, B. 2003. On digital soil mapping. Geoderma. 117: 3-52.
38.Mehnatkesh, A., Ayoubi, S., Jalalian, A., and Sahrawat, K.L. 2013. Relationships between soil depth and terrain attributes in a semiarid hilly region in western Iran.
Journal of Mountain Science. 10: 1. 163-172.
39.Minasny, B., and McBratney, A.B. 2016. Digital soil mapping: A brief history and some lessons. Geoderma. 264: 301-311.
40.Mousavi, S.R., Sarmadian, F., Dehghani, S., Sadikhani, M.R., and Taati, A. 2017. Evaluating inverse distance weighting and kriging methods in estimation of some physical and chemical properties of soil in Qazvin Plain. Eurasian Journal of Soil Science. 6: 4. 327-336.
41.Nelson, R.E. 1982. Carbonate and gypsum. P 181-179. In: A.L. Page (ed.) Methods of soil analysis. American Society of Agronomy, Madison.
42.Neter, J., Wasserman, W., and Kutner, M.H. 1989. Applied linear regression models. Chicago. 3rd. )ed.( 720: 519. 536.
43.Olaya, V. 2004. A gentle introduction to SAGA GIS. The SAGA User Group eV, Gottingen, Germany. 208p.
44.PALSAR, A. 2016. Japan aerospace exploration agency. Available from: https://www.asf.alaska.edu/sar-data/ palsar/.
45.Pouladi, N., Moller, A.B., Tabatabai, S., and Greve, M.H. 2019. Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma. 342: 85-92.
46.Soil Survey Staff. 2014. Keys to soil taxonomy. 12th ed. USDANatural Resources Conservation Service, Washington, DC.
47.Taghizadeh-Mehrjardi, R. 2016. Modern concepts in Soil Science (Pedometric). Ardakan Univ. Press. 311p. (In Persian)
48.Van Wambeke, A.R. 2000. The Newhall simulation model for estimating soil moisture and temperature regimes. Department of Crop and Soil Sciences, Cornell University, Ithaca, NY USA.pp. 1-9.
49.Veronesi, F., and Schillaci, C. 2019. Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation. Ecological Indicators. 101: 1032-1044.
50.Liaw, A., and Wiener, M. 2002. Classification and regression by Random forest. R news. 2: 3. 18-22.
51.Viscarra Rossel, R.A., Webster, R., and Kidd, D. 2014. Mapping gamma radiation and its uncertainty from weathering products in a Tasmanian landscape with a proximal sensor and random forest kriging. Earth Surface Processes and Landforms. 39: 6. 735-748.
52.Walkley, A., and Black, I.A. 1934. An examination of the digestion method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science.37: 29-38.
53.Webster, R., and Oliver, M.A.2007. Geostatistics for environmental scientists: John Wiley and Sons. 330p.
54.Wilford, J., De Caritat, P., and Bui, E. 2015. Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors. Geoderma. 259: 81-92.
55.Wilding, L. 1985. Spatial variability: its documentation, accommodation and implication to soil surveys. pp. 166-194.
56.Witten, I.H., Frank, E., and Hall, M.A. 2011. Data Mining: Practical machine learning tools and techniques: Morgan Kaufmann. pp. 1-525.
57.Zeraatpisheh, M., Ayoubi, S., Jafari, A., Tajik, S., and Finke, P. 2019. Digital mapping of soil properties using multiple machines learning in a semi-arid region, central Iran. Geoderma. 338: 445-452.