توسعه و مقایسه توابع انتقالی خاک و توابع انتقالی طیفی برای برآورد نگه‌داشت آب در برخی از خاک‌های استان کردستان

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد ، گروه علوم و مهندسی خاک، دانشگاه کردستان،

2 استادیار، گروه علوم و مهندسی خاک، دانشگاه کردستان

چکیده

سابقه و هدف: منحنی نگه‌داشت آب در خاک از جمله ویژگی‌های مهم هیدرولیکی خاک بوده که در شبیه سازی جریان آب و انتقال املاح در بخش غیر‌اشباع خاک کاربرد دارد. اندازه‌گیری مستقیم منحنی‌های نگه‌داشت آب در خاک دشوار، زمان‌بر و پرهزینه می‌باشد؛ بدین منظور محققین روش‌هایی غیر‌مستقیم همچون توابعی انتقالی را برای برآورد منحنی نگه‌داشت آب در خاک با استفاده از داده‌های سهل الوصول پیشنهاد کرده‌اند. در چند دهه اخیر، استفاده از داده‌های طیفی خاک به‌عنوان روشی سریع، کم‌هزینه و غیرمخرب در برآورد ویژگی‌های مبنایی خاک به طور گسترده‌ای مورد توجه قرار گرفته است. در این پژوهش امکان استفاده از داده‌های طیفی خاک در گستره مرئی- مادون قرمز نزدیک، به‌عنوان متغیر ورودی توابع انتقالی و ارزیابی عملکرد آن در مقایسه با ویژگی‌های مبنایی خاک در برآورد منحنی نگه‌داشت آب در خاک بررسی گردید.
مواد و روش‌ها: تعداد 100 نمونه خاک، جمع‌آوری و منحنی‌های بازتاب طیفی آنها در گستره 2500-350 نانومتر با استفاده از دستگاه اسپکترورادیومتر زمینی اندازه‌گیری شد. برخی از ویژگی‌های مبنایی خاک شامل توزیع اندازه ذرات، جرم ویژه ظاهری و حقیقی، مقدار کربن آلی و کربنات کلسیم معادل به همراه مقادیر رطوبت در پتانسیل‌های ماتریک 10-، 33-، 50-، 100-، 300-، 500-، 1000- و 1500- کیلو پاسکال با دستگاه صفحات و غشاء فشاری تعیین شد. منحنی بازتاب طیفی نمونه‌ها با استفاده از نرم‌افزار RS3 موجود بر روی رایانه قابل‌حمل متصل به دستگاه اسپکترورادیومتر، با تعداد 5 قرائت برای هر نمونه خاک ثبت شد. پس از انجام پیش‌پردازش‌های طیفی، همبستگی بین مقادیر جذب در هر یک از طول موج‌های مورد‌مطالعه با مقادیر رطوبت خاک در مکش‌های مختلف بررسی شد. سپس با استفاده از روش‌رگرسیونی خطی چندگانه گام‌به‌گام و بهره‌گیری از داده‌های مبنایی و طیفی خاک، روابطی ریاضی به‌ترتیب تحت‌عنوان توابع انتقالی خاکی (PTFs) و طیفی (STFs) پی‌ریزی شد. به‌منظور ارزیابی دقت توابع پیشنهادی از آماره‌‌هایی همچون ضریب تبیین تعدیل شده (R2adj)، ریشه میانگین مربعات خطای نرمال‌شده (NRMSE)، میانگین خطا (ME) و نسبت انحراف دقت (RPD) استفاده شد.
یافته ها: توابع انتقالی خاکی (PTFs) در انتهای خشک منحنی نگهداشت آب در خاک در مقایسه با انتهای مرطوب آن برآورد‌های دقیق‌تری ارائه کردند. دلیل این موضوع را می‌توان وجود همبستگی بالای رطوبت خاک با توزیع اندازه ذرات خاک در انتهای خشک منحنی نگهداشت آب خاک بیان کرد. نتایج حاصل از ارزیابی آماره‌ها نشان داد که PTFs پی‌ریزی شده جهت برآورد نگه‌داشت آب در خاک در مکش‌های 10 تا 1500 کیلو‌پاسکال از دقت پیش‌بینی خوبی برخوردار بودند. این در حالی است که STFs در مقایسه با PTFs پیشنهادی در برآورد پارامترهای مورد‌مطالعه نیز، دارای نتایجی معقول اما به‌نسبت ضعیف‌تری بودند.
نتیجه‌گیری کلی: در مجموع نتایج این پژوهش نشان داد، برغم نتایج نسبتاً کم‌دقت‌تر STFs نسبت بهPTFs به‌دلیل صرف هزینه، زمان و داده‌برداری صحرایی کمتر، استفاده از داده‌های طیفی خاک می‌تواند به‌عنوان روشی غیرمستقیم و نوین برای برآورد مقادیر رطوبت حجمی خاک به ازای پتانسیل‌های ماتریک مختلف مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Developing and comparing pedotransfer functions and spectral transfer functions for predicting water retention in some soils of Kurdistan province

نویسندگان [English]

  • Seyedeh Vida Hosseini 1
  • Masoud Davari 2
  • Naser Khaleghpanah 2
1 Department of Soil Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
2 Department of Soil Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
چکیده [English]

Background and objectives: The soil water retention curve (SWRC), as an important hydraulic soil property, is used in modeling water flow and solute transport in the unsaturated zone of the soil. Direct measurements of SWRC are difficult, time-consuming and costly. Hence, researchers have proposed indirect methods such as pedotransfer functions to estimate soil water retention curve using readily available soil data. Over the last decades, soil spectral data as a rapid, low cost, and non-destructive method has been widely applied to estimate basic soil properties. Consequently, in this study, the feasibility of using soil spectral information in the visible and near-infrared region, as input variables for transfer functions, and evaluation its performance was investigated compared to basic soil properties in estimating soil water retention curve.
Materials and methods: A number of 100 soil samples were collected and their spectral reflectance over 350-2500 nm region were measured using a handheld spectroradiometer apparatus. Some basic soil properties such as particle size distribution, particle density, bulk density, organic carbon content and calcium carbonate equivalent, and soil moisture content at matric potentials of -10, -33, -50, -100, -300, -500, -1000, and -1500 kPa were also determined with pressure plate - membrane apparatus. Spectral reflectance curves of the samples were recorded using RS3 software on a portable computer connected to a spectroradiometer with 5 readings per soil sample. After spectral preprocessing, the correlation coefficient between absorption features of soil in each wavelength with soil moisture content at different matric potentials were investigated. Stepwise multiple linear regression was applied to derive pedo-transfer functions (PTFs) and spectral transfer functions (STFs) that uses basic soil properties and soil spectral reflectance as input, respectively. The accuracy of the proposed functions were assessed by adjusted coefficient of determination (R2adj), normalized root mean square error (NRMSE), mean error (ME), and the ratio of performance to deviation (RPD).
Results: Pedo-transfer functions (PTFs) provided more accurate estimates at the dry-end of the soil moisture curve than the wet-end, due to the high correlation of soil moisture with soil particle size distribution at the dry-end of the soil moisture curve. The results of the statistical parameters showed that the derived PTFs for estimating soil water retention at 10 to 1500 kPa matric suctions have good prediction accuracy. However, STFs also had reasonable but poorer results than the proposed PTFs in estimating the studied characteristics.
Conclusion: Overall, the results of this study revealed that, despite the relatively poorer results of STFs than PTF, due to lower costs, time and field data, soil spectral data can be used as an indirect and novel method for estimating volumetric soil moisture content at different matric potentials.

کلیدواژه‌ها [English]

  • Basic soil properties
  • Matric potential
  • Soil spectral data
  • Stepwise multiple linear regression
1.Acutis, M., and Donatelli, M. 2003. SOILPAR 2.00: software to estimate soil hydrological parameters and
function. European Journal of Agronomy.18: 373-377.
2.Askari, M.S., Cui, J., O’Rourke, S.M., and Holden, N.M. 2015. Evaluation of soil structural quality using VIS–NIR spectra. Soil and Tillage Research.146: 108-117.
3.Babaeian, E., Homaee, M., Montzka,C., Vereecken, H., and Norouzi,A.A. 2015. Towards retrieving soil hydraulic properties by hyperspectral remote sensing. Vadose Zone Journal.14: 3. 1-17.
4.Babaeian, E., Homaee, M., and Norouzi, A.A. 2013. Deriving and validating point spectrotransfer functions in VIS-NIR-SWIR range to estimate soil water retention. Gorgan, Journal of Water and Soil Resources Conservation. 2: 3. 27-41. (In Persian)
5.Baumgardner, M.F., Silva, L.F., Biehl, L.L., and Stoner, E.R. 1985. Reflectance properties of soils. Advances in Agronomy. 38: 1-44.
6.Cecillon, L.C., Barthesb, B.G., Gomez, C., Ertlen, D., Genot, V., Hedde, M., Stevengs, A., and Brun, J. 2009. Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). European Journal of Soil Science. 60: 770-784.
7.Chang, C.W., and Laird, D.A. 2002. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Science. 167: 2. 110-116.
8.Clark, R.N., King, T.V., Klejwa,M., Swayze, G.A., and Vergo, N. 1990. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research: Solid Earth.95: B8. 12653-12680.
9.Dane, J.H., and Topp, C.G. 2002. Methods of Soil Analysis: Part 4 Physical Methods. Soil Science Society of America, Madison, WI. 1692p.
10.Ghorbani Dashtaki, Sh., Homaee, M., and Khodaberdiloo, H. 2010. Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use and Management. 26: 68-74.
11.Hagh Verdi, A., Ghahreman, B., Jalini, M., Khoshnood yazdi, A.A., and Arabi, Z. 2010. Modeling water retention curve of some Iranian soils using pseudo parametric neural network pedotransfer functions. Kerman, Journal of Irrigation and Water Engineering. 1: 1. 69-82.(In Persian)
12.Hamilton, L.C. 1990. Modern data analysis. A first course in applied statistics. Brooks/Cole Publishing Co. Pacific Grove, CA, USA. 684p.
13.Homaee, M., and Farrokhian Firouzi, A.F. 2008. Deriving point and parametric pedotransfer functions of some gypsiferous soils. Soil Research. 46: 3. 219-227.
14.Janik, L.J., Merry, R.H., Forrester, S.T., Lanyon, D.M., and Rawson, A. 2007. Rapid prediction of soil water retention using mid infrared spectroscopy. Soil Science Society of America Journal.71: 2. 507-514.
15.Karimi, S.A., Davari, M., Bahrami, H.A., Babaeian, E., and Hossaini, S.M.T. 2017. Predicting some soil properties using VIS-NIR spectroscopy in the Kurdistan province. Tehran, Iranian Journal of Soil and Water Research. 48: 573-585. (In Persian)
16.Khayamim, F., Wetterlind, J., Khademi, H., Jean Robertson, A.H., Cano, A.F., and Stenberg, B. 2015. Using Visible and near Infrared Spectroscopy to Estimate Carbonates and Gypsum in Soils in Arid and Subhumid Regions of Isfahan, Iran. Journal of Near Infrared Spectroscopy. 23: 155-165.
17.Khodaverdiloo, H., Homaee, M., van Genuchten, M.T., and Dashtaki, S.G. 2011. Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology. 399: 1-2. 93-99.
18.Lobell, D.B., and Asner, G.P. 2002. Moisture effects on soil reflectance. Soil Science Society of America Journal.
66: 722-727.
19.Minasny, B., McBratney, A., Tranter, G., and Murphy, B. 2008. Using soil knowledge for the evaluation of mid‐infrared diffuse reflectance spectroscopy for predicting soil physical and mechanical properties. European Journal of Soil Science. 59: 960-971.
20.Moazenzadeh, R., Ghahraman, B., Fathalian, F., and Khoshnood Yazdi, A.A. 2009. Effect of type and number of input variables on moisture retention curve and saturated hydraulic conductivity prediction. Mashhad, Journal of Water and Soil. 23: 3. 57-70. (In Persian)
21.Mousavi, F., Abdi, E., Ghalandarzadeh, A., Bahrami, H.A., Majnounian, B.,
and Ziadi, N. 2020. Diffuse reflectance spectroscopy for rapid estimation of soil Atterberg limits. Geoderma. 361. 114083.
22.Mutuo, P.K., Shepherd, K.D., Albrecht, A., and Cadisch, G. 2006. Prediction of carbon mineralization rates from different soil physical fractions using diffuse reflectance spectroscopy. Soil Biology and Biochemistry. 38: 1658-1664.
23.Nanni, M.R., and Demattê, J.A.M. 2006. Spectral reflectance methodology in comparison to traditional soil analysis. Soil Science Society of America Journal. 70: 2. 393-407.
24.Nemes, A., Schaap, M.G., and Wösten, J.H.M. 2003. Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Science Society of America Journal.67: 4. 1093-1102.
25.Nocita, M., Stevens, A., Noon, C., and van Wesemael, B. 2013. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma. 199: 37-42.
26.Pinheiro, É.F., Ceddia, M., Clingensmith, C., Grunwald, S., and Vasques, G. 2017. Prediction of Soil Physical and Chemical Properties by Visible and Near-Infrared Diffuse Reflectance Spectroscopy in the Central Amazon. Remote Sensing. 9: 293.
27.Schneider, W.E., and Young, R. 1997. Spectroradiometry methods. P239-288, In: Casimer De Cusatis (ed). Handbook of Applied Photometry. Woodbury,New York.
28.Shirazi, M.A., and Boersma, L. 1984. A unifying quantitative analysis of soil texture. Soil Science Society of America Journal. 48: 142-147.
29.Stenberg, B. 2010. Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma. 158: 15-22.
30.Tomasella, J., Pachesky, Y.A., Crestana, S., and Rawls, W.J. 2003. Comparison of two techniques to develop pedotransfer function for water retention. Soil Science Society of America Journal. 67: 1085-1092.
31.Tranter, G., Minasny, B., McBratney, A.B. Rossel, R.A., and Murphy, B.W. 2008. Comparing spectral soil inference systems and mid-infrared spectroscopic predictions of soil moisture retention. Soil Science Society of America Journal. 72: 5. 1394-1400.
32.Tümsavaş, Z., Tekin, Y., Ulusoy, Y., and Mouazen, A.M. 2019. Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy. Biosystem Engineering. 177: 90-100.
33.Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G., and Genuchten, M.T. 2010. Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose Zone Journal. 9: 4. 795-820.
34.Viscarra Rossel, R.A. 2008. ParLeS software for chemometric analysis of spectroscopic data. Chemometrics and Intelligent Laboratory Systems.90: 1. 72-83.
35.Viscarra Rossel, R.A., McGlynn, R., and McBratney, A. 2006. Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy. Geoderma. 137: 70-82.
36.Volkan Bilgili, A., van Es, H.M., Akbas, F., Durak, A., and Hively, W.D. 2010. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Journal of Arid Environments. 74: 229-238.
37.Wosten, J.H.M., Pachepsky, Y.A., and Rawls, W.J. 2001. Pedotransfer function: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology. 251: 123-150.