تفکیک ویژگی‌های موثر خاک بر منحنی مشخصه رطوبتی با استفاده از درخت تصمیم‌گیری

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشگاه شهرکرد

2 استاد، گروه علوم و مهندسی خاک، دانشگاه شهرکرد،

3 استاد، گروه علوم و مهندسی خاک، دانشگاه ولی‌عصر رفسنجان

4 دانشیار ، گروه مهندسی نفت، معدن و ژئوفیزیک دانشگاه صنعتی شاهرود،

5 استادیار، گروه علوم و مهندسی خاک، دانشگاه شهرکرد

چکیده

سابقه و هدف: تکنیک‌های محاسباتی نرم‌ در دهه‌های اخیر به‌طور وسیعی در تحقیقات علمی و مسائل مهندسی مطالعه و به‌کار برده شده‌اند. از آنجایی‌که اندازه‌گیری ویژگی‌های هیدرولیکی با روش‌های مستقیم آزمایشگاهی دشوار، زمانبر و هزینه‌بر است و روش‌های جایگزینی را می‌طلبد که بتوان با صرف هزینه و زمان کمتری آن را از روی داده‌های زودیافت خاک برآورد نمود. روش‌های ناپارامتریک از روش‌های نوین برآورد ویژگی‌های هیدرولیکی خاک همانند منحنی مشخصه رطوبتی خاک می‌باشند. این پژوهش به منظور مطالعه کارایی روش ناپارامتریک درخت تصمیم‌گیری برای تفکیک ویژگی‌های موثر در تخمین پارامترهای منحنی مشخصه رطوبتی خاک انجام شد.
مواد و روش‌ها: بدین منظور، 72 نمونه خاک از مناطق مختلف زیرحوزه مرغملک واقع در شهرستان شهرکرد از عمق 0- 20 سانتی‌متری جمع‌آوری و برخی ویژگی‌ها مانند پ‌هاش، شوری، رطوبت اشباع، کربنات کلسیم معادل، ماده آلی، فراوانی نسبی ذرات، چگالی، میانگین وزنی قطر خاکدانه خشک و مرطوب، میانگین هندسی و انحراف معیار هندسی قطر ذرات خاک اندازه‌گیری شدند. هم‌چنین، منحنی مشخصه رطوبتی در مکش‌های صفر، 1، 3، 5 ،10، 30، 50، 500،100، 1000، 1500 کیلو-پاسکال تعیین گردید و بر مدل ون‌گنوختن برازش داده شد. متغیرهای ورودی در دو سناریو (سناریو اول: پ‌هاش، EC، درصد شن و رس، ماده آلی، کربنات کلسیم، میانگین وزنی قطر خاکدانه خشک و مرطوب، چگالی و رطوبت اشباع و سناریو دوم: پ-هاش،EC، میانگین هندسی قطر ذرات، انحراف معیار هندسی قطر ذرات، ماده آلی، کربنات کلسیم، میانگین وزنی قطر خاکدانه خشک و مرطوب، چگالی و رطوبت اشباع) به نرم‌افزار MATLAB معرفی و به وسیله درخت تصمیم‌گیری و تخمین‌گرهای خطای اعتبار‌سنجی متقاطع و بازجایگزینی مدل‌سازی شدند. معیارهای ارزیابی در مدل‌سازی شامل ضریب تبیین، جذر میانگین مربعات خطا و درصد میانگین مربعات خطا بود.
یافته‌ها: نتایج به‌دست آمده از مدل‌سازی با درخت تصمیم‌گیری نشان داد که مهم‌ترین عامل موثر بر رطوبت در مکش نقطه پژمردگی (PWP) رطوبت اشباع و رس می‌باشند. در هر دو سناریو متغیر هدف PWP بیشترین میزان همبستگی (به ترتیب (88/0) و (91/0)) و کمترین میزان خطا را بین سایر متغیرها داشت، و پس از آن ظرفیت زراعی دارای بیشترین میزان همبستگی (86/0) در سناریو دوم بود. متغیر هدف nنیز بیشترین میزان خطا وα کمترین همبستگی را در دو سناریو داشت. به طور کلی سناریو دوم با جایگزینی میانگین هندسی و انحراف معیار قطر ذرات با درصد رس و شن عملکرد بهتری نسبت به سناریو اول داشت. آنالیز حساسیت نشان داد که رطوبت PWP به پ‌هاش و چگالی، کربنات کلسیم و ماده آلی و رطوبت ظرفیت زراعی (FC) به انحراف معیار هندسی و میانگین وزنی قطر خاکدانه مرطوب بیشترین حساسیت را داشتند.
نتیجه‌گیری: به طور کلی مدل‌سازی در هر دو سناریو موفق بود، اما با جایگزینی میانگین هندسی و انحراف معیار قطر ذرات به جای درصد رس و شن عملکرد بهتری در برآورد متغیرهای منحنی مشخصه رطوبتی در سناریو دوم به وجود آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Separation Effective Soil Properties on Moisture Characteristic Curve Using Decision tree

نویسندگان [English]

  • samira mesri 1
  • Shoja Ghorbani 2
  • Hossein Shirani 3
  • abolghasem Kamkarrohani 4
  • hamidrezaidreza Motaghian 5
1 shahrekord university
2
3 Vali-e-Asr University of Rafsanjan
4 Shahrood university
5 soil science department, shahrekord university
چکیده [English]

Background and objectives: Soft computational techniques have been widely used in scientific research and engineering in recent decades. Since the measurement of hydraulic properties by direct laboratory methods is hard, time consuming and expensive, Thus, there is need to use alternative methods based on conveniently available soil properties to estimate it with less effort, time and cost. One of the new methods for estimating soil hydraulic properties, such as soil moisture characteristic curve, is non-parametric methods. This study was performed to determine the efficiency of the decision tree method in
separation of effective properties in estimating soil moisture characteristic curve parameters.
Materials and methods: To perform this study, number of 72 points were selected in the village of Marghmalek and Sharekord city. Samples were collected from depth of 0-20 cm and then were transferred to the laboratory for required measurements. Some properties such as pH, EC, saturated moisture, calcium carbonate, organic matter, clay and sand, bulk density, mean weight diameter of dry aggregate, mean weight diameter of wet aggregate, geometric mean and standard deviation of particle diameter were measured in the laboratory. Also, the moisture characteristic curves were determined at 0, 1, 3, 5, 10, 30, 50, 100, 150, 1000, 1500 kPa suctions and were fitted to the van Genuchten model. The input variables were introduced into the MATLAB software in two scenarios (first scenario: pH, EC, %clay and sand, organic matter, calcium carbonate, mean weight diameter of wet and dry aggregate, bulk density, saturated moisture and the second scenario: pH, EC, geometric mean and standard deviation of particle diameter, organic matter, calcium carbonate, mean weight diameter of wet and dry aggregate, bulk density, saturated moisture) and modeled by decision tree and error estimators of cross validation and resub stitution. Evaluation statistics of each model including R2, RMSE and %RMSE were calculated.
Results: The results obtained from decision tree modeling showed that the most important factors affecting moisture content in PWP suction, were saturated moisture and clay. The PWP target variable has the highest correlation in the first scenario (0.88) and in the second scenario )0.91( and the least error rate among the other variables, and after that, FC has the highest correlation (0.86) in the second scenario. Target variables n had the highest error rate and α the lowest correlation in both scenarios. Generally, the second scenario performed better than the first scenario by replacing the geometric mean and standard deviation of particle diameter with the percentage of clay and sand. The sensitivity analysis showed that PWP was the most sensitive among the input parameters to pH, BD, calcium carbonate and organic matter and FC was the most sensitive to geometric standard deviation of particle and MWDwet.
Conclusion: In general, modeling has been successful in both scenarios. But by substituting geometric mean and standard deviation of particle diameter instead of clay and sand percentage, a better performance was obtained in estimating moisture characteristic curve variables in the second scenario.

کلیدواژه‌ها [English]

  • Field capacity
  • van Genuchten equation
  • Moisture curve
1.Abbasi, Y.B., Ghanbarian-Alavijeh, A.M., Liaghat, A.M., and Shorafa. 2011. Evaluation of pedotransfer functions for estimating soil water retention curve of saline and saline-alkali soils of Iran. Soil Science Society of China. 21: 2. 230-237.
2.Amir-Abedi, H., Asghari, Sh.A., Mesri-Gandshamin, T., and Keivanbehjo, F. 2013. Estimating of field capacity, permanent wilting and available water content in Ardabil plain soils using regression and artificial neural network models. Urmia Applied Soil Research.1: 1. 60-72. (In Persian)
3.Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal.
54: 464-465.
4.Farzadmehr, M., Chahmani, M., and Khayaki Siouki, A.S. 2018. Comparing decision tree and instance-based learning models to estimate soil saturated hydraulic conductivity. Journal of Soil and Water Conservation Research.
25: 5. 167-184. (In Persian)
5.Haghverdi, A., Ghahraman, B., Khoshnood Yazdi, A.A., and Arabi, Z. 2010. Estimating of water content in FC and PWP in north and north east of Iran's soil samples using k-nearest neighbor and artificial neural networks. Journal of Water and Soil, 24: 4. 804-814.(In Persian)
6.Hengle, T., and Husnjak, S. 2006. Evaluation adequacy and usability of soil maps in Croatia. Soil Science Society of America Journal, 70: 920-929.
7.Hutson, J.L., and Cass, A. 1987. A retentivity function for use in soil-water simulation models. Journal of Soil Science. 38: 105-113.
8.Kemper, W.D., and RoseNau, R.C. 1986. Aggregate stability and size distribution. P 425-442. In: D.L. Sparks (ed.) Methods of soil analysis. american society of agronomy, Madison. ‏
9.Khashei Siuki, A., Jalali Moakhar, V.R., Noferesti, A.M., and Ramazani, Y. 2015. Comparing nonparametric k-nearest neighbor technique with ANN model for predicting soil saturated hydraulic conductivity. Journal of Soil Management in Sustainable Production. 5: 3. 81-95.(In Persian)
10.Klute, A., and Dirksen, C. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. P 687-734. In: A. Klute (ed.). Method of soil analysis, Part1: Agronomy Soil Science Society of America Madison.WI.
11.Matsuyama, T. 1987. Knowledge- Based Aerial Image Understanding system and Expert System for Image Processing. IEEE Transaction on Geoscience and Remote Sensing, 25: 305-316.
12.Meshkani, A.S., and Nazemi, A.S. 2009. Introduction to Data Mining. Ferdowsi University Press, Mashhad. 456p.
(In Persian)
13.Minasny, B. 2007. Prediction soil properties. Journal Ilmu Tanah dan Lingkungan. 7: 54-67.
14.Moncada, M.P., Gabriels, D., and Cornelis, W.M. 2014. Data-driven analysis of soil quality indicators using limited data. Geoderma. 235: 271-278.
15.Motaghian, H.R., and Mohamadi, J. 2010. Comparison of some physical indicators of soil quality in different land uses in Marghmalak basin, Shahrekord (Chaharmahal and Bakhtiari province). Journal of water and soil (Agricultural Sciences and Industries). 25: 1. 115-124. (In Persian)
16.Nemes, A., Rawls, W.J., and Pachepsky, Y.A. 2006. Use of the nonparametric nearest neighbor approach to estimate soil hydraulic properties. Journal of Soil Science Society of America. 70: 2. 327-336.
17.Openshaw, S., and Openshaw, C. 1997. Artificial Intelligence in Geography. John Wiley & Sons Ltd, Chichester. 348p.
18.Page, M.C., Sparks, D.L., Noll, M.R., and Hendricks, G.J. 1987. Kinetics and mechanisms of potassium release from sandy Middle Atlantic Coastal Plain soils. Journal of Soil Science Society of America. 51: 1460-1465.
19.Ramezani, M., Ganbarian, B., Liaghat, AM., and Salehi Khoshkroudi, Sh. 2011. Developing pedotransfer functions for saline and saline- alkali soils. Journal of Water and Irrigation Management.1: 1. 99-110. (In Persian)
20.Shahrabi, C. 2011. Data Mining 2. First edition, Amir Kabir University Industrial Jihad Press, Tehran. 300p.
21.Shirani, H., and Rafienejad, N. 2012. Estimating of some missing soil properties with regression pedotransfer functions and neural network in the Kerman. Journal of Soil Research. 25. 4: 349-359. (In Persian)
22.Shirani, H. 2017. Artificial neural networks with an application in agricultural and natural resource sciences. Rafsanjan Univ. Press. 320p. (In Persian)
23.Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Journal of Soil Science. 37: 29-38.
24.Zhou, J., and Yu, J.L. 2005. Influences affecting the soil-water characteristic curve. Journal of Zhejiang University Science. 6: 797-804.