بررسی تأثیر کاربرد کود اوره و زهاب مزرعه نیشکر بر برخی خصوصیات خاک، عملکرد دانه و غلظت عناصر غذایی در بذر گیاه کینوا

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش آموخته دکتری گروه علوم خاک، دانشگاه شهید چمران اهواز،

2 دانشیار گروه علوم خاک، دانشگاه شهید چمران اهواز،

3 استاد گروه علوم خاک، دانشگاه شهید چمران اهواز،

4 دانشیار گروه زراعت، دانشگاه شهید چمران اهواز

چکیده

چکیده
سابقه و هدف: یکی از راه‌های استفاده و بهره‌برداری از آب و اراضی شور استفاده از گونه‌های متحمل به شوری مانند گیاه کینوا است .مدیریت عناصر غذایی مانند نیتروژن در خاک‌های شور می‌تواند اثرات منفی شوری بر رشد و عملکرد گیاهان را کاهش دهد. هدف از این مطالعه بررسی تأثیر سطوح مختلف کود اوره در شرایط آبیاری با زه‌آب مزارع نیشکر بر برخی خصوصیات شیمیایی خاک و دانه کینوا در طول یک فصل زراعی صورت گرفته است.
مواد و روش‌ها: آزمایشی مزرعه‌ای در سال زراعی 1397 به صورت کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی در سه تکرار در شرکت کشت و صنعت نیشکر میرزا کوچک خان در جنوب غرب استان خوزستان اجرا گردید. در این آزمایش چهار سطح کود اوره (0، 75، 150، 225 کیلوگرم در هکتار) به عنوان فاکتور اصلی و سه سطح زهاب نیشکر شامل شاهد (آب کارون با شوری 5/2 دسی‌زیمنس بر متر) و آبیاری یک در میان (کارون – زهاب نیشکر) و آبیاری با زهاب نیشکر (با شوری 5/7 دسی‌زیمنس بر متر) به عنوان فاکتور فرعی در نظر گرفته شد. کاشت بذر به صورت جوی و پشته‌ای.با فاصله دو بوته 10-7 سانتی‌متر و فاصله خطوط 65 سانتی‌متر با دست انجام شد. اعمال تیمارهای آبیاری در مرحله استقرار گیاهچه انجام شد. قبل از آبیاری نمونه رطوبت خاک گرفته شده و آبیاری برای رسیدن رطوبت تا حد ظرفیت زراعی انجام گردید. برای آبیاری با زهاب، از آب شور زهکش‌های کشت و صنعت استفاده گردید. نمونه خاک در پایان دوره کشت کینوا از عمق 50-0 سانتیمتری هر کرت آزمایشی تهیه شد. در پایان دوره رشد کینوا، دانه‌های کینوا هر تیمار به طور جداگانه مورد آنالیز شیمیایی قرار گرفت.
یافته‌ها: نتایج تحقیق حاضر نشان داد اثر متقابل کاربرد تیمارها بر میانگین شوری خاک، پتاسیم محلول خاک و غلظت نیتروژن، و پتاسیم و سدیم دانه کینوا از لحاظ آماری معنی‌دار بود اما اثر معنی‌دار بر pH و غلظت سدیم خاک، غلظت فسفر و آهن دانه کینوا مشاهده نگردید. شوری خاک درانتهای فصل زراعی کینوا نسبت به ابتدای فصل در کرت‌های با آبیاری کارون کاهش و در تیمارهای آبیاری یک‌درمیان و زهاب افزایش نشان داد. بیشترین میانگین نیتروژن دانه کینوا (94/2 درصد) از سطح 150 کیلوگرم اوره در هکتار با آبیاری یک در میان حاصل شد که منجر به 56 درصد افزایش شد. با افزایش کاربرد کود اوره در خاک، افزایش تدریجی محتوی نیتروژن کل دانه کینوا مشاهده گردید. در کلیه سطوح شوری افزایش کود اوره باعث کاهش میزان سدیم دانه کینوا شد. کود اوره توانست جذب پتاسیم را که در شرایط شور به دلیل سمیت سدیم کاهش می‌یابد، بهبود بخشد.
نتیجه‌گیری: نتایج این مطالعه نشان داد که نیتروژن کافی می‌تواند یک راهکار فیزیولوژیکی مناسب افزایش تحمل اثرات زیان‌بار شوری در کینوا باشد و با توجه به طبیعت شورزیست گیاه کینوا، در مدیریت آبیاری یکدرمیان افزایش شوری خاک تا حد متوسط باعث بهبود شرایط رشد مرفولوژیک و کیفیت دانه کینوا گردید. توصیه می‌شود جهت استفاده بهینه از آب کارون و دستیابی به عملکرد بالا کینوا، آبیاری یکدرمیان جایگزین آبیاری کارون گردد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of urea fertilizer application and sugarcane field drainage on some soil properties, grain yield and nutrient concentrations in quinoa seeds

نویسندگان [English]

  • payvand papan 1
  • Abdolamir Moezzi 2
  • mostafa choorom 3
  • afrasyab rahnama 4
1 KWPA
2 Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz
3 3. Professor, Department of Soil Science, Faculty of Soil Engineering, Shahid Chamran University of Ahvaz. Ahwaz. Iran
4 4. Assistant Professor, Department of Agronomy, Faculty of Agricultural Engineering, Shahid Chamran University, Ahvaz. Ahwaz. Iran
چکیده [English]

Abstract
Background and purpose: One of the ways to use and exploit saline water and lands is to use salinity tolerant cultivars such as quinoa. Management of nutrients such as nitrogen in saline soils can have negative effects of salinity on growth and yield. Cut plants. The aim of this study was to investigate the effect of different levels of urea fertilizer under irrigation conditions of sugarcane fields on some chemical properties of soil and quinoa seeds during a growing season.

Materials and Methods: A field experiment was conducted in the year 2018 in the form of split plots in a randomized complete block design with three replications in Mirza Kuchak Khan Sugarcane Cultivation and Industry Company in the southwest of Khuzestan province. In this experiment, four levels of urea fertilizer (0, 75, 150, 225 kg/ha) as the main factor and three levels of sugarcane drainage including control (Karun water with salinity of 2.5 dS-Siemens per meter) and irrigation one in between ( Karun - sugarcane drainage) and sugarcane drainage irrigation (with salinity of 7.5 dS / m) were considered as sub-factors. Seed sowing was done in the form of barley and ridges with a distance of 7-10 cm between two plants and a distance of 65 cm between the lines by hand. Irrigation treatments were applied at the seedling establishment stage. Before irrigation, soil moisture samples were taken and irrigation was done to reach the moisture content of the field capacity. For irrigation with drainage, saline water of agricultural and industrial drains was used. Soil samples were taken at the end of the quinoa cultivation period from a depth of 0-50 cm per experimental plot. At the end of quinoa growth period, quinoa seeds were chemically analyzed separately for each treatment.

Results: The results of the present study showed that the interaction effect of treatments on mean soil salinity, soil soluble potassium and nitrogen, potassium and sodium concentrations of quinoa seeds was statistically significant but had a significant effect on soil acidity and sodium concentration, phosphorus and grain iron concentrations. Quinoa not observed. Soil salinity decreased at the end of Quinoa crop season compared to the beginning of the season in plots with Karun irrigation and increased in intermediate and drainage irrigation treatments. The highest average quinoa nitrogen (2.94%) was obtained from the level of 150 kg N / ha with one irrigation, which resulted in an increase of 56%. With increasing application of urea fertilizer in soil, a gradual increase in total nitrogen content of quinoa was observed. At all salinity levels, increasing urea fertilizer decreased the quinoa sodium content. Urea fertilizer was able to improve the absorption of potassium, which is reduced in saline conditions due to sodium toxicity.

Conclusion: The results of this study showed that sufficient nitrogen can be a suitable physiological solution to increase tolerance to the harmful effects of salinity in quinoa and due to the salinity nature of quinoa, in moderate irrigation management, increasing soil salinity to moderate Morphological growth conditions and grain quality of quinoa. It is recommended to replace Karun irrigation with intermittent irrigation in order to make optimal use of Karun water and achieve high quinoa yield.

کلیدواژه‌ها [English]

  • Nitrogen
  • Potassium
  • Quinoa
  • Sodium
  • Sugarcane drainage
1.Abou-Amer, A.I., and Kamel, A.S. 2011. Growth, yield and nitrogen utilization efficiency of quinoa (Chenopodium quinoa) under different rates and methods of nitrogen fertilization. Agronomy Journal Egypt. 33: 155-166.
2.Adolf, V.I., Shabala, S., Andersen, M.N., Razzaghi, F., and Jacobsen, E.S. 2012: Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil. 357: 117-129.
3.Algosaibi, A.M., El-Garawany, M.M., Badran, A.E., and Almadini, A.M. 2015. Effect of irrigation water salinity on the growth of Quinoa plant seedlings. Journal of Agricultural Science, 7: 205-214.
4.Almutawa, M., and Elkatony, T.M. 2001. Salt tolerance of two wheat genotypes in response to the form of nitrogen. Agronomy Journal. 21: 259-266.
5.Aly, A.A., Al-Barakah, F.N., and El-Mahrouky, M.A. 2018. Salinity stress promote drought tolerance of Chenopodium quinoa Willd. Communications in Soil Science and Plant Analysis, 49: 1331-1343.
6.Apse, M.P., and Blumwald, E. 2002. Engineering salt tolerance in plant. Journal of Biotechnology. 13: 146-150.
7.Basra, S.M.A., Iqbal, S., and Afzal, I. 2014. Evaluating the response of nitrogen application on growth, development and yield of quinoa genotypes, International Journal of Agriculture and Biology,16: 886-892.
8.Cavazza, L., Patruno, A., and Cirillo, E. 2002. Soil trait and structure stability in artificial sodicated soil. Italian Journal of Agronomy. 6: 15-25.
9.Cucci, G., Lacolla, G., and Rubino, P. 2013. Irrigation with saline-sodic water: Effects on soil chemical-physical properties. African Journal of Agricultural Research. 8: 358-365.
10.Choudhary, O.P., Ghuman, B.S., Josan, A.S., and Bajwa, M.S. 2006. Effect of alternating irrigation with sodic and non-sodic waters on soil properties and sunflower yield. Agricultural Water Management. 85: 151-156.
11.Eisa, S.S., Eid, M.A., Abd El-Samad, E.H., Hussin, S.A., Abdel-Ati, A.A.,El-Bordeny, N.E., and El-Naggar, A.M. 2017. 'Chenopodium quinoa' Willd. A new cash crop halophyte for saline regions of Egypt. Australian Journal of Crop Science, 11: 343-354.
12.Erenoglu, E.B., Kutman, U.B., Ceylan, Y., Yildiz, B., and Cakmak, I. 2011. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobiliza-tion of zinc (Zn) in wheat. The New Phytologist, 189: 438-448.
13.Erley, G.S.A., Kaul, H., Kruse, M., and Aufhammer, W. 2005. Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. European Journal of Agronomy, 22: 95-100.
14.Feizi, M.M., Hajabbasi, A., and Mostafazadeh-Fard, B. 2010. Saline irrigation water management strategies for better yield of safflower (Carthamus tinctorius L.) in an arid region. Australian Journal of Crop Science.4: 408-414. (In Persian)
15.Gandois, L., Perrin, A.S., and Probst, A. 2011. Impact of nitrogenous fertilizer induced proton release on cultivated soils with contrasting carbonate contents: a column experiment. Geochimica et Cosmochimica Acta.75: 1185-1198.
16.Gholami, A., Jafarnejadi, A., Sayad, G., and Davami, A. 2019. Transfer and zoning functions of iron in wheat seeds and soil of some southern farms of Khuzestan province. Journal of Crop Physiology. 3: 7-15. (In Persian)
17.Grattan, S.R., and Grieve, C.M. 1999. Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78: 1-4. 127-157.
18.Han, J., Shi, J., Zeng, L., Xu, J., and Wu, L. 2015. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils. Environmental Science and Pollution Research, 22: 2976-2986.
19.Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S.E., and Shabala, S. 2010. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany, 62: 185-193.
20.Havlin, J.L., Beaton, J.D., Tisdale, S.L., and Nelson, W.L. 1999. Soil fertility and fertilizers: An introduction to nutrient management. 6th ed. Prentice Hall,New Jersey, United States of America.
21.Hawizawi, S., and Naseri, A. 2016. The effect of sugarcane drainage irrigation on soil chemical properties. Journal
of Water and Irrigation Management.6: 117-132. (In Persian)
22.Haydon, M.J., and Cobbett, C.S. 2007. Transporters of ligands for essential metal ions in plants. New Physiologist. 174: 499-506.
23.Helyar, K.R., Cregan, P.D., and Godyn,D.L. 1990. Soil acidity in New-South- Wales-current pH values and estimates of acidification rates. Soil Research,28: 523-537.
24.Jafari, S., and Baghernegad, M. 2004. Investigation of wet effects of drying and cultivation systems on potassium fixation in some soils and clays of Khuzestan. Journal of Agricultural Science and Technology and Natural Resources. 41: 75-90. (In Persian)  
25.Karimi, M. 2020. Interactive effects of irrigation water salinity and urea fertilizer on wheat (Triticumaestivum L.) yield and yield components. Environmental Stresses in Crop Sciences. 13: 937-951. (In Persian)
26.Khamadi, F., Mesgarbashi, M., Hasibi, P., Farzaneh, M., and Enayat Zamir, N. 2016. Effect of plant residues and different levels of nitrogen fertilizer on the quality and concentration of micronutrients in wheat grain, Journal of Agriculture, Pp: 109-120. (In Persian)
27.Khan, M.A., Shirazi, M.U., Mujtaba, S.M., and Ashraf, M.Y. 2009. Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat. Pakestan Journal Botany. 41: 633-638.
28.Koyro, H.W., Lieth, H., and Eisa, S.S. 2008. Salt tolerance of Chenopodium quinoa Willd. P 133-145. In: H. Leith, M.G. Sucre, and B. Herzog (eds.) Mangroves and halophytes: restoration and utilization, Springer, Dordrech, the Netherlands.
29.Khuzestan Water and Power Authoriy Company (Kwpa). 2011. Khuzestan province drainage management studies report. 570p. (In Persian)
30.Navarro, J.M., Botella, M.A., Cerda, A., and Martineze, V. 2001. Phosphorus uptake and translocation in salt stressed melon plants. Journal of Plant Physiology, 158: 375-381.
31.Mahmoud, A.H., and Sallam, S. 2017. Response of Quinoa (Chenopodium quinoa Willd) Plant to Nitrogen Fertilization and Irrigation by Saline Water. Alexandria Science Exchange Journal, 38: 326-334.
32.Malakooti, M.J., and Homaee, M. 2004. Fertility of arid and semi-arid soils. Tarbiat Modares University Press. Tehran. 518p. (In Persian)
33.Malakouti, M.J., and Tehrani, M. 2000. The role of micronutrients in increasing yield and improving the quality of agricultural products "The role of microelements with macro impact", Tarbiat Modares University Press. Issue 43. 328p. (In Persian)
34.Malhi, S.S., Lemke, R., Wang, Z.H., and Chhabra, B.S. 2006. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Research. 90: 171-183.
35.Marschener, H. 1995. Mineral Nutrition of Higher Plants. 2nd edition, Academic Press, London. Pp: 313-404.
36.Murtaza, G., Ghafoor, A., and Qadir, M. 2006. Irrigation and soil management strategies for using saline-sodic water in a cotton–wheat rotation. Agricultural Water Management. 81: 98-114.
37.Naheed, G., Shahbaz, M., and Akram, N.A. 2008. Intractive effect of rooting medium application of phosphorus and NaCl on plant biomass and mineral nutrients of rice (Oryza Sativa L.). Pakistan Journal of Botany. 40: 1601-1608.
38.Orsini, F., Accorsi, M., Gianquinto, G., Dinelli, G., Antognoni, F., Carrasco, K. B.R., and Biondi, S. 2011. Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Functional Plant Biology, 38: 818-831.
39.Peshger, M. 2010. Comparison of potassium and ammonium stabilization in lands with different uses. Master Thesis. Ramin University of Agriculture and Natural Resources, Khuzestan. 153p. (In Persian)
40.Perrin, A.S., Probst, A., and Probst, J.L. 2008. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: implications for weathering CO2 uptake at regional and global scales. Geochim Cosmochim Acta, 72: 3105-3123.
41.Pradeep, M.R., and Narasimha, G.2012. Effect of leather industry effluents on soil microbial and protease activity. Biodiversity and Environmental Science. 33: 39-42.
42.Qaeda, S., Afrasyab, P., and Leyahat, A. 2015. Consolidated use of salt and non-saline water in sorghum and sunflower cultivation in Sistan plain. Iranian Journal of Soil and Water Research. 46: 23-27. (In Persian)
43.Ragab, A.A.M.M., Hellal, F.A., and Abd El-Hady, M. 2008. Irrigation water salinity effects on some soil water constants and plant. 12th International Water Technology Conference, Alexandria, Egypt.
44.Razzaghi, F., Plauborg, F., Jacobsen, S.E., Jensen, C.R., and Andersen, M.N. 2012. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agricultural Water Management. 109: 20-29.
45.Shams, A.S. 2012. Response of quinoa to nitrogen fertilizer rates under sandy soil conditions. In Proc. 13th International Conf. Agron., Fac. of Agric. Benha Univ. Egypt. Pp: 9-10.
46.Simakopoulou, A. 2006. Effect of iron supply and nitrogen form on growth, nutritional status and ferric reducing activity of spinach in nutrient solution culture. Scientia Horticulturae. 110: 21-29.
47.Tedeschi, A., Dell’Aquila, R. 2005. Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics. Agricultural Water Management,77: 308-322.
48.Tisdale, S.L., Nelson, W.L., Beaton, J.D., and Havlin, J.L. 1993. Soil fertility and fertilizers. Macmillan Publishing Company, New York. 123p.
49.Vincent, G.T., Bruschi, G.R.A., Cristina, F.M., Lucas, Y., and Regina, M.C. 2010. Irrigation with domestic wastewater:
A: Mulitivariate Analysis of Main Soil Changes. Brazilian Soil Science. 34: 1427-1434.
50.Wilson, C., Read, J.J., and Abo-Kassem, E. 2002. Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety. Journal of Plant Nutrition, 25: 2689-2704.
51.Yousfi, S., Wissal, M., Mahmoudi, H., Abdelly, C., and Gharsalli, M. 2007. Effect of salt on physiological responses of barley to iron deficiency. Journal of Plant Physiology and Biochemistry. 45: 309-314.
52.Zangani, A., Kashani, A., Fathi, G.H. and Meskarbashi, M. 2007. Effect of different nitrogen levels on yield andyield components of two cultivars of rapeseed quantity and quality in Ahwaz. Journal of Agriculture Sciences. 25: 39-45. (In Persian)