تعیین فسفر زیست فراهم در برخی از خاک های شالیزاری به روش آزمون جلبکی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 ﮔﺮوه ، ﻋﻠﻮم و ﻣﻬﻨﺪﺳﯽ ﺧﺎک، داﻧﺸﮑﺪه علوم ﮐﺸﺎورزی، داﻧﺸﮕﺎه ﮔﯿﻼن، رﺷﺖ، اﯾﺮان

2 ﮔﺮوه، ﻋﻠﻮم و ﻣﻬﻨﺪﺳﯽ ﺧﺎک، داﻧﺸﮑﺪه علوم ﮐﺸﺎورزی، داﻧﺸﮕﺎه ﮔﯿﻼن، رشت، ایران

3 گروه، خاکشناسی دانشکده علوم کشاورزی دانشگاه گیلان

چکیده

سابقه و هدف: هدررفت فسفر از اراضی کشاورزی و ورود آن به منابع آبی سبب پدیده سرشارسازی و شکوفایی جلبکی شده و کنترل فسفر ورودی به زیست‌بوم‌های آبی را به چالشی مهم برای مدیریت این منابع تبدیل کرده است. آزمون جلبکی به عنوان قابل اعتمادترین روش برای کمی‌سازی پتانسیل زیست‌فراهمی فسفر محسوب می‌شود. این پژوهش با هدف بررسی زیست‌فراهمی فسفر در سه نمونه خاک شالیزاری و ارتباط آن با رشد ریزجلبک کلرلا انجام گرفت.
مواد و روش‌ها: نمونه‌برداری خاک از عمق 10-0 سانتی‌متری اراضی شالیزاری واقع در پنج منطقه پسیخان، پیربازار، سیاه درویشان، فخب و لاکان انجام شد. این اراضی برای مدت طولانی و به صورت سالانه کود فسفری دریافت کرده بودند. ابتدا با عصاره‌گیری پی در پی به روش هدلی بخش‌های مختلف فسفر در 5 نمونه خاک تعیین شد و سپس با توجه به مقدار فسفر کل، فسفر در بخش‌های مختلف و درصد رس، سه نمونه از خاک‌ها (پسیخان، پیربازار و لاکان) به عنوان تنها منبع فسفر به محیط کشت ریزجلبک کلرلا اضافه شدند. آزمایش در قالب طرح کاملاً تصادفی به روش اندازه‌های تکرار شده در زمان با سه تکرار انجام شد. مقدار کلروفیل a، تعداد سلول‌های ریزجلبک، فسفر کل محلول و فسفر ذره‌ای در روزهای صفر، 7، 14، 21 و 28 انکوباسیون اندازه-گیری شد.
یافته‌ها: دو خاک پیربازار و فخب از نظر بخش‌بندی فسفر مشابه و ترتیب بخش‌ها به صورت اکسیدی< باقی‌مانده< کربناتی< محلول-تبادلی بود. در حالی‌که در سه خاک دیگر بخش‌بندی فسفر به صورت باقی‌مانده< اکسیدی<کربناتی< محلول-تبادلی بود. مقدار کلروفیل a ریزجلبک در هر سه نمونه خاک روند افزایشی نشان داد و در روز چهاردهم به بیشترین مقدار رسید و پس از آن ثابت شد. تعداد سلول‌های ریزجلبک در تیمار خاک پیربازار تا روز چهاردهم انکوباسیون و در خاک‌های لاکان و پسیخان تا پایان دوره انکوباسیون روند افزایشی نشان داد. فسفر کل محلول در تمامی تیمارها در طول دوره انکوباسیون تا روز هفتم روند افزایشی داشت و پس از آن کاهش یافت. فسفر ذره‌ای در روز هفتم انکوباسیون به شدت کاهش و سپس در ادامه انکوباسیون افزایش نشان داد. مقدار کلروفیل a و تعداد سلول‌های ریزجلبک در دو هفته اول انکوباسیون همبستگی مثبت و معناداری با فسفر کل محلول نشان دادند و در دو هفته بعد رشد ریزجلبک تحت تاثیر فسفر ذره‌ای قرار گرفت.
نتیجه‌گیری: از آن‌جا ‌که خاک می‌تواند به عنوان منبع فسفر امکان رشد ریزجلبک را فراهم نماید، بنابراین توجه به فسفر ورودی به زیست‌بوم‌های آبی از طریق اراضی کشاورزی حاشیه رودخانه‌ها برای مدیریت پدیده سرشارسازی در تالاب انزلی ضروری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining bioavailable phosphorus in some paddy soils by algal assay method

نویسندگان [English]

  • Ali Gholamalizadeh 1
  • Nasrin Ghorbanzadeh 2
  • Mohammad Bagher Farhangi 2
  • Maryam Khalili Rad 3
1 Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
چکیده [English]

Background and objectives: The loss of phosphorus (P) from agricultural lands and its entry into water resources has caused the algal bloom and eutrophication phenomena, and has marked the control of P entrance to aquatic ecosystems as an important challenge for the management of these resources. Algal assay is considered as the most reliable method for quantifying the potential of P bioavailability. The aim of this study was to investigate the bioavailability of P in three paddy soils and its relationship with the growth of Chlorella sp. microalgae.
Materials and methods: Soil samples were taken from a depth of 0-10 cm of paddy fields located in five regions of Pasikhan, Pirbazar, Siahdarvishan, Fakhab and Lakan, which had annually received phosphorus fertilizer for a long time. At first, different P fractions were determined by Hedley sequential extraction method in 5 soils, and 3 soils (Psikhan, Pirbazar and Lakan) based on the total P content, P in different fractions and clay content were selected and added to the Chlorella sp. culture medium as the only P supply source. The experiment was performed as repeated measures in a completely randomized design with three replications. Chlorophyll a content, microalga cell number, total dissolved P (TDP) and particulate P (PP) concentrations were measured at days 0, 7, 14, 21, and 28 of incubation.
Results: Phosphorus fractions of Pirbazar and Fakhab soils were similar as followed in oxide >residual >carbonate> solution-exchangeable. While in the other three soils, the phosphorus fractions followed the trend of residual >oxide >carbonate> solution- exchangeable. The chlorophyll a content showed an increasing trend in all samples and reached its maximum on the 14th day and was then almost constant. The number of microalgae cells in Pirbazar treatment showed an increasing trend until the 14th day of incubation, while it remained increasing in Lakan and Pesikhan treatments until the end of the incubation period. TDP concentration increased during the incubation period in all treatments until the 7th day and then decreased. Particulate phosphorus decreased sharply on the 7th day of incubation and then increased. The chlorophyll a content and the number of microalgae cells showed a significant positive correlation with TDP at the first two weeks of incubation, while the microalga growth was affected by particulate P in the next two weeks of incubation.
Conclusion: Since soil as the only source of P can accelerate the microalgae growth in aquatic ecosystems, considering P originated from agricultural lands along rivers to manage the eutrophication phenomenon is necessary especially in wetlands catchment.

کلیدواژه‌ها [English]

  • Eutrophication
  • Dissolved phosphorus
  • Inorganic phosphorus
  • Sequential extraction
1.Haque, S. E. (2021). How effective are existing phosphorus management strategies in mitigating surface water quality problems in the U.S? Sustainability, 13, 6565. doi.org/10.3390/ su13126565.
2.Kleinman, P. J. (2017). The persistent environmental relevance of soil phosphorus sorption saturation. Current Pollution Reports, 3, 141-150. doi:10.1007/s40726-017-0058-4.
3.Mbabazi, J., Inoue, T., Yokota, K., & Saga, M. (2019). Phosphorus bioavailability in rivers flowing through contrasting land uses. Journal of Environmental Chemical Engineering,7 (2), 102960. doi:10.1016/j.jece.2019. 102960.
4.Dijkstra, M. L., Corcoran, M. J., Sloan, J. J., & Lutz, B. L. (2020). Assessing phosphorus distribution and bioavailability in Lake Decatur, IL. Lake and Reservoir Management, 36, 376-390. doi.org/10.1080/10402381.2020.1744775.
5.Ekholm, P., & Krogerus, K. (2003). Determining algal-available phosphorus of differing origin: routine phosphorus analyses versus algal assays. Hydrobiologia, 492 (1-3), 29-42. doi:10.1023/A:1024857626784.
6.Baker, D. B., Confesor, R., Ewing, D. E., Johnson, L. T., Kramer, J. W., & Merryfield, B. J. (2014). Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: the importance of bioavailability. Journal of Great Lakes Research, 40 (3), 502-517. doi.org/10.1016/j.jglr.2014.05.001.
7.Withers, P. J. A., Sylvester-Bradley, R., Jones, D. L., Healey, J. R., & Talboys, P. J. (2014). Feed the crop not the soil: Rethinking phosphorus management in the food chain. Environmental Science and Technology, 48, 6523-6530. doi: 10.1021/es501670j.
8.Ekholm, P., Turtola, E., Gro¨nroos, J., Seuri, P., & Ylivainio, K. (2005). Phosphorus loss from different farming systems estimated from soil surface phosphorus balance. Agriculture, Ecosystems and Environment, 110, 266-278. doi.org/ 10.1016/j.agee.2005.04.014.
9.Puchongkawarin, C., Gomez-Mont, C., Stuckey, D. C., & Chachuat, B. (2015). Optimization-based methodology for the development of wastewater facilities for energy and nutrient recovery. Chemosphere, 140, 150-158. doi.org/ 10.1016/j.chemosphere.2014.08.061.
10.Withers, P. J. A., Vadas, P. A., Uusitalo, R., Forber, K. J., Hart, M., Foy, R. H., Delgado, A., Dougherty, W., Lilja, H., Burkitt, L. L., Rubæk, G. H., Pote, D., Barlow, K., Rothwell, S., & Owens, P. R. (2019). A global perspective on integrated strategies to manage soil phosphorus status for eutrophication control without limiting land productivity. Journal of Environmental Quality, 48: 1234-1246. doi.org/ 10.2134/jeq2019.03.0131.
11.Zhang, H. Y., Tian, Y. L., Cui, S. B., Zhang, L. Y., Zhong, X., & Xiong, Y. W. (2016). Influence of macrophytes on phosphorus fractionation in surface sediments in a constructed wetland: Insight from sediment compositions. Ecological Engineering, 97, 400-412. doi.org/10.1016/j.ecoleng.2016.10.043.
12.Wang, C. Y., Zhang, Y., Li, H. L., & Morrison, R. J. (2013). Sequential extraction procedures for the determination of phosphorus forms in sediment. Limnology, 14, 147-157. doi:10.1007/s10201-012-0397-1.
13.Worsfold, P. J., Monbet, P., Tappin, A. D., Fitzsimons, M. F., Stiles, D. A., & McKelvie, I. D. (2008). Characterization and quantification of organic phosphorus and organic nitrogen components in aquatic systems: A Review. Analytica Chimica Acta, 624, 37-58. doi.org/10.1016/j.aca.2008. 06.016.
14.Withers, P. J. A., & Bowes, M. J. (2018). Phosphorus the pollutant. In: C. Schaum, editor, Phosphorus: Polluter and resource of the future: Removal and recovery from wastewater. IWA Publishing, London. Pp: 3-34.
15.Okubo, Y., Inoue, T., Yokota, K., & Tsushima, K. (2011). Potential bioavailability of phosphorus in citrus orchard soil to Microcystis aeruginosa. Water Science and Technology, 63(6), 1298-302. doi:10.2166/wst.2011. 374.
16.Anderson, B. H., & Magdoff, F. R. (2005). Autoclaving soil samples affects algal-available phosphorus. Journal of Environmental Quality, 34(6), 1958-1963. doi:10.2134/jeq2005.0024.
17.Li, B., & Brett, M. T. (2015). The relationship between operational and bioavailable phosphorous fractions in effluents from advance nutrient removal systems. International Journal of Environmental Science and Technology, 12, 3317-3328. doi:10.1007/s13762-015-0760-y.
18.Wang, C., Kong, H., He, S., Zheng, X., & Li, C. (2010). The inverse correlation between growth rate and cell carbohydrate content of Microcystis aeruginosa. Journal of Applied Phycology, 22, 105-107. doi:10.1007/ s10811-009-9421-1.
19.Hoffman, A. R., Armstrong, D. E., Lathrop, R. C., & Penn, M. R. (2009). Characteristics and influence of phosphorus accumulated in the bed sediments of a stream located in an agricultural watershed. Aquatic Geochemistry, 15, 371-389. doi:10.1007/ s10498-008-9043-2.
20.Arfania, H., Samadi, A., Asadzadeh, F., Sepehr, E., & Asal Pisgeh, Z. (2017). Phosphorus fractionation in relation to algal growth (Scenedesmus Obliquus) in western river sediment of Urmia Lake basin. Journal of Water and Soil Conservation, 24 (3), 95-112. doi: 10.22069/jwfst.2017.12481.2713. [In Persian]
21.Mirroshandel, A. S., & Khavandkar, O. (2015). Investigation of nitrogen and phosphorus in Anzali wetland in causing algal bloom. Journal of Environmental Science and Engineering, 1, 11-18. http://www.jesb.ir/article_10699.html. [In Persian]
22.Andersen, R. A. (2005). Algal culturing techniques, Elsevier. Academic Press, New York, 578p.
23.Okubo, Y., Inoue, T., & Yokota, K. (2012). Estimating bioavailability of soil particulate phosphorus to Microcystis aeruginosa. Journal of Applied Phycology, 24, 1503-1507. doi:10.1007/ s10811-012-9809-1.
24.Sparks, D. L. (1996). Methods of Soil Analysis Part 3 Chemical Methods. Soil Science Society of America, American Society of Agronomy, Madison.
25.Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In: Page, A.L., Ed., Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, 403-430.
26.Kuo, S. (1996). Phosphorus. p. 869-919. In: R. L. Sparks (ed.), Methods of Soil Analysis. Part 3. Chemical Methods, SSSA, Madison, WI., USA.
27.Hedley, M. J., Stewart, J. W. B., & Chauhan, B. S. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46(5), 970-976. doi.org/10.2136/sssaj 1982.03615995004600050017x.
28.Pancha, I., Chokshi, K., Maurya, R., Trivedi, K., Patidar, S. K., Ghosh, A., & Mishra, S. (2015). Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 189, 341-348. doi.org/10.1016/j.biortech.2015.04.017.
29.Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. doi.org/10.1016/S0003-2670(00)88444-5.
30.de Jonge, L.W., Moldrup, P., Rubæk, G.H., Schelde, K., & Djurhuus, J. (2004). Particle leaching and particle-facilitated transport of phosphorus at field scale. Vadose Zone Journal, 3, 462-470. doi.org/10.2136/vzj2004. 0462.
31.Nishigaki, T., Sugihara, S., Kobayashi, K., Hashimoto, Y., Kilasara, M., Tanaka, H., Watanabe, T., & Funakawa, S. (2018). Fractionation of phosphorus in soils with different geological and soil physicochemical properties in southern Tanzania. Soil Science and Plant Nutrition, 64 (3), 291-299. doi.org/ 10.1080/00380768.2018.1436406.
32.Yang, X. Y., Chen, X. W., & Yang, X. T. (2019). Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil and Tillage Research, 187, 85-91. doi: 10.1016/j.still.2018.11.016.
33.Kang, J., Hesterberg, D., & Osmond, D.L. (2009). Soil organic matter effects on phosphorus sorption: A path analysis. Soil Science Society of America Journal, 73, 360-366. doi: 10.2136/sssaj2008. 0113.
34.Bo, L., Wang, D., Zhang, G., & Wang, C. (2014). Evaluating the relationship between phosphorus bioavailability and phosphorus speciation in sediments from rural rivers in the Taihu Lake Area. China. Polish Journal of Environmental Studies, 23 (6), 1933-1940. doi.org/ 10.15244/pjoes/24924.
35.Cross, A. F., & Schlesinger, W. H. (1995). A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 64, 197-214. doi.org/10.1016/0016-7061(94)00023-4.
36.Lu, C. D., Guo, P., Ji, J., Liu, L., & Yang, P. (2016). Evaluation of phosphorus distribution and bioavailability in sediments of a subtropical wetland reserve in southeast China. Ecological Indicators, 66, 556-563. doi.org/ 10.1016/ j.ecolind.2016.02.015.
37.Petterson, K. (2001). Phosphorus characteristics of settling and suspended particles in Lake Erken. Science of the Total Environment, 266 (1-3), 79-83. doi: 10.1016/s0048-9697(00)00737-3.
38.Meng, J., Yao, P., Yu, Z. G., Bianchi, T. S., Zhao, B., Pan, H. H., & Li, D. (2014). Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang Estuary and adjacent East China Sea inner shelf. Estuarine. Coastal and Shelf Science, 144, 27-38. doi.org/10.1016/j.ecss. 2014.04.015.
39.Bastami, K. D., Neyestani, M. R., Raeisi, H., Shafeian, E., Baniamamd, M., Shirzadi, A., Esmaeilzade, M., Mozaffari, S., & Shahrokhi, B. (2018). Bioavailability and geochemical speciation of phosphorus in surface sediments of the Southern Caspian Sea. Marine Pollution Bulletin, 126, 51-57. doi.org/10.1016/j.marpolbul.2017.10.095.
40.Yang, B., Lan, R. Z., Lu, D. L., Dan, S. F., Keng, Z. J., Jiang, Q. C., Lan, W. L., & Zhong, Q. P. (2019). Phosphorus biogeochemical cycling in intertidal surface sediments from the Maowei Sea in the northern Beibu Gulf. Regional Studies in Marine Science, 28, 100624. doi.org/10.1016/j.rsma. 2019.100624.
41.Acharya, S. S., Panigrahi, M. K., Kurian, J., Gupta, A. K., & Tripathy, S. (2016). Speciation of phosphorus in the continental shelf sediments in the Eastern Arabian Sea. Continental Shelf Research, 115, 65-75. doi.org/10.1016/ j.csr.2016.01.005.
42.Dan, S. F., Liu, S. M., & Yang, B. (2020). Geochemical fractionation, potential bioavailability and ecological risk of phosphorus in surface sediments of the Cross River estuary system and adjacent shelf, South East Nigeria
(West Africa). Journal of Marine Systems, 201, 103244. doi: 10.1016/ j.jmarsys.2019.103244.
43.Sudheesh, V., Movitha, M., Hatha, A. A. M., Renjith, K. R., Resmi, P., Rahiman, M., & Nair, S. M. (2017). Effects of seasonal anoxia on the distribution of phosphorus fractions in the surface sediments of southeastern Arabian Sea shelf. Continental Shelf Research, 150, 57-64. doi.org/10.1016/ j.csr.2017.09.011.
44.McCray, J. M., Wright, A. L., Luo, Y., & Ji, S. (2012). Soil phosphorus forms related to extractable phosphorus in the everglades agricultural area. Soil Science, 177(1), 31-38. doi: 10.1097/ SS.0b013e31823782da.
45.Jalali, M., & Ranjbar, F. (2010). Aging effects on phosphorus transformation rate and fractionation in some calcareous soils. Geoderma, 155, 101-106. doi.org/ 10.1016/j.geoderma.2009.11.030.
46.Ruban, V., Lopez-Sanchez, J. F., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. (2001). Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments: A synthesis of recent works. Fresenius. Journal of Analytical Chemistry, 370 (2-3), 224. doi: 10.1007/ s002160100753.
47.Nie, X., Xiang, W., Chen, J., Vladimir, Z., & An, T. (2008). Response of the freshwater alga Chlorella vulgaris
to trichloroisocyanuric acid and ciprofloxacin. Journal of Environmental Toxicology and Chemistry, 27, 168-173. doi: 10.1897/07-028.1.
48.Ratomski, P., & Hawrot-Paw, M. (2021). Influence of nutrient-stress conditions on Chlorella vulgaris biomass production and lipid content. Catalysts, 11 (5), 573. doi.org/ 10.3390/ catal11050573.
49.Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19, 257-275. doi.org/10.1016/j.sjbs.2012.04.005.
50.Martinez, M., Sánchez, S., Jimenez, J., El Yousfi, F., & Munoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 73 (3), 263-72. doi.org/ 10.1016/S0960-8524(99)00121-2.
51.Mohsenpour, S. F., Richards, B., & Willoughby, N. (2012). Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresource Technology, 125, 75-81. doi.org/10.1016/j.biortech.2012.08.072.
52.Liang, K., Zhang, Q., Gu, M., & Cong, W. (2013). Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. Journal of Applied Phycology, 25, 311-318. doi: 10.1007/s10811-012-9865-6.
53.Chen, M., Li, J., Dai, X., Sun, Y., & Chen, F. (2011). Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology, 12, 187-192. doi: 10.1007/ s10201-010-0336-y.
54.Fan, J., Cui, Y., Wan, M., Wang, W., & Li, Y. (2014). Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnology for Biofuels, 7, 17. doi: 10.1186/1754-6834-7-17.
55.Roopnarain, A., Gray, V. M., & Sym, S. D. (2014). Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresource Technology, 156, 408-411. doi: 10.1016/j.biortech.2014.01.092.
56.Liu, J., Luo, X., Zhang, N., & Wu , Y. (2016). Phosphorus released from sediment of Dianchi Lake and its effect on growth of Microcystis aeruginosa. Environmental Science and Pollution Research, 23 (16), 16321-8. doi: 10.1007/s11356-016-6816-9.
57.Yan, X., Yang, W., Chen, X., Wang, M., Wang, W., Ye, D., & Wu, L. (2020). Soil phosphorus pools, bioavailability and environmental risk in response to the phosphorus supply in the red soil of southern China. International Journal of Environmental Research and Public Health, 17, 7384. doi: 10.3390/ijerph 17207384.
58.Kraal, P., Bostick, B. C., Behrends, T., Reichart, G. J., & Slomp, C. P. (2015). Characterization of phosphorus species in sediments from the Arabian Sea oxygen minimum zone: combining sequential extractions and X-ray spectroscopy. Marine Chemistry, 168, 1-8. doi: 10.1016/j.marchem. 2014.10.009.
59.Kraal, P., & Slomp, C. P. (2014). Rapid and extensive alteration of phosphorus speciation during oxic storage and
wet sediment sampling. PLoS One, 9 (5), 96859. doi: 10.1371/journal. pone.0096859.
60.Coelho, J. P., Flindt, M. R., Jensen, H. S., Lillebø, A. I., & Pardal, M. A. (2004). Phosphorus speciation and availability in intertidal sediments of a temperate estuary: relation to eutrophication and annual P-fluxes. Estuarine, Coastal and Shelf Science, 61, 583-590. doi:10.1016/ J.ECSS. 2004.07.001.
61.Meng, J., Yu, Z. G., Yao, Q. Z., Bianchi, T. S., Paytan, A., Zhao, B., Pan, H. H., & Yao, P. (2015). Distribution, mixing behavior, and transformation of dissolved inorganic phosphorus and suspended particulate phosphorus along a salinity gradient in the Changjiang Estuary. Marine Chemistry, 168, 124-134. doi.org/10.1016/j.marchem.2014.09.016.