1.Wang, X., Han, C., Zhang, J., Huang, Q., Deng, H., Deng, Y., & Zhong, W. (2015). Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China.
Soil Biology and Biochemistry, 84, 28-37.
doi:org/10. 1016/j.soilbio.2015.02.013.
3.Upadhyaya, H., & Panda, S. K. (2013). Abiotic stress responses in tea [
Camellia sinensis L (O) Kuntze]: an overview.
Reviews in Agricultural Science, 1, 1–10.
doi: 10.7831/ras.1.1.
4.Liu, H., Chen, G. H., Sun, J. J., Chen, S., Fang, Y., & Ren, J. H. (2022). Isolation, characterization, and tea growth-promoting analysis of JW-CZ2, a bacterium with 1-aminocyclopropane-1-carboxylic acid deaminase activity isolated from the rhizosphere soils of tea plants. Frontiers in Microbiology, 13, 792876. doi: 10.3389/fmicb.2022. 792876.
5.Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Boyce, A. N. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability. A Review Molecules, 21, 573.
6.Ramakrishna, W., Yadav, R., & Li, K. (2019). Plant growth promoting bacteria in agriculture: two sides of a coin
. Applied Soil Ecology, 138, 10-18.
doi: 10.3390/molecules21050573.
7.Yirga, C., Erkossa, T., & Agegnehu, G. (2019). Soil acidity management; Ethiopian Institute of Agricultural Research (EIAR): Addis Ababa, Ethiopia.
8.Hu, Z., Ji, L., Wan, Q., Li, H., Li, R., & Yang, Y. (2022). Short-term effects of bio-organic fertilizer on soil fertility and bacterial community composition in tea plantation soils.
Agronomy, 12, 2168.
doi:10.3390/agronomy12092168.
9.Bhattacharjee, R. B., Singh, A., & Mukhopadhyay, S. N. (2008). Use of nitrogen fixing bacteria as biofertilizer for non-legumes: prospects and challenges. Applied Microbiology and Biotechnology, 80, 199-209. doi: 10.1007/s00253-008-1567-2.
10.Tang, S., Liu, Y. J., Zheng, N., Li, Y., Ma, Q. X., Xiao, H., Zhou, X., Xu, X. P., Jiang, T. M., He, P., & Wu, L. H. (2020). Temporal variation in nutrient requirements of tea (
Camellia sinensis) in China based on QUEFTS analysis.
Science Report, 10, 1745.
doi: 10.1038/ s41598-020-57809-x.
11.Wang, H., & Han, L. Z. (2019). Identification of four plant growth-promoting rhizobacteria isolated from tea rhizosphere. Microbiology China, 46, 548-562. doi: 10.13344/j.microbiol. china.180149.
12.Gebrewold, A. Z. (2018). Review on integrated nutrient management of tea (Camellia sinensis L.). Cogent Food and Agriculture, 4 (1), 1543536. doi: org/10.1080/23311932.2018.1543536.
13.Dutta, J., & Thakur, D. (2017). Evaluation of multifarious plant growth promoting traits, anta gonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India. PLoS ONE, 12 (8), e0182302. doi: 10.1371/journal.pone.0182302.
14.Chakraborty, U., Chakraborty, B. N., & Chakraborty, A. P. (2012). Induction of plant growth promotion in Camellia sinensis by Bacillus megaterium and its bioformulations. World Journal of Agricultural Sciences, 8 (1), 104-112. Corpus ID: 18543293.
15.Nepolean, P., Jayanthi, R., Pallavi, R. V., Balamurugan, A., Kuberan, T., Beulah, T., & Premkumar, R. (2012). Role of biofertilizers in increasing tea productivity. Asian Pacific Journal of Tropical Biomedicine, 1443-1445. doi:10.1016/S2221-1691(12)60434-1.
16.Tennakoon, P. L. K., Rajapaksha, R. M. C. P., & Hettiarachchi, L. S. K. (2019). Tea yield maintained in PGPR inoculated field plants despite significant reduction in fertilizer application. Rhizosphere, 10, 100146. doi.org/10.1016/j.rhisph.2019.100146.
17.Bouyoucos, G. J. (1936). Directions for making mechanical analyses of soils by the hydrometer method. Soil Science,
42 (3), 225-230.
18.Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., & Sumner, M. E. (1996). Chemical methods, Methods of soil analysis. SSSA Books Series, 5, 961-1010.
19.Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science,37 (1), 29-38.
20.Rowell, D. I. (1994). Soil science method and application, longmangrop, Limitation Score. Computers and Geosciences, 33, 1316-1326.
21.Olsen, S. R., & Watanabe, F. S. (1957). A method to determine a phosphorus adsorption maximum of soils as measured by the Langmuir isotherm. Soil Science Society of America Journal, 21 (2), 144-149. doi.org/10.2136/sssaj 1957.03615995002100020004x.
22.Sperber, J. I. (1958). The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research, 9 (6), 778-781. doi.org/10.1071/AR9580778.
23.Mehta, S., & Nautiyal, C. S. (2001). An efficient method for qualitative screening of phosphate solubilizing bacteria. Journal of Current Microbiology, 43, 51-56. doi: 10.1007/ s002840010259.
24.Jackson, M. L. (1958). Soil Chemical Analysis. Prentice-Hall Inc., Englewood Cliffs, NJ, 498 p.
25.Gupta, P. K. (1999). Soil, plant, water and fertilizer analysis. Agrobios, New Delhi, India. 350 p.
26.Bremner, J. M., & Malvaney, C. S. (1982). Total nitrogen. In: Page, L. (Ed.), Methods of Soil Analysis, Part 2(2). American Society of Agronomy, Madison, Wisconsin, U.S.A, pp. 595-622.
27.Horneck, D. A., & Hanson, D. (2019). Determination of potassium and sodium by flame emission spectrophotometry. In Handbook of reference methods for plant analysis (pp. 153-155). CRC press.
28.Anderson, T. H., & Domsch, K. (1993). The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, 25 (3), 393-395. doi.org/ 10.1016/0038-0717(93)90140-7.
29.Jenkinson, D. S., & Ladd, J. N. (1981). Microbial biomass in soil: measurement and turnover. In: Paul, E. A. and Ladd, J. N. (ed.) Soil biochemistry: Volume 5 New York Marcel Dekker, Inc. pp. 415-471.
30.USDA-NCRS. (2017). The Plants Database National Plant Data Team U Plants [http://plants. Usda. Gov, accessed 26 November].
31.Wu, S., Zhuang, G., Bai, Z., Cen, Y., Xu, S., Sun, H., Han, X., & Zhuang, X. (2018). Mitigation of nitrous oxide emissions from acidic soils by
Bacillus amyloliquefaciens, a plant growth-promoting bacterium.
Global Change Biology, 24 (6), 2352-2365.
doi:10.1111/ gcb.14025.
32.Paul, E. A. ed., (2014). Soil microbiology, ecology and biochemistry. Academic press.
33.Nosheen, S., Ajmal, I., & Song, Y. (2021). Microbes as Biofertilizers, a Potential Approach for Sustainable
Crop Production. MDPI, 13, 1-20. doi.org/10.3390/su13041868.
34.Dommelen, A. V., & Vanderleyden, J. (2007). Biology of the Nitrogen Cycle. Elsevier, 179-192.
35.Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13, 1-10. doi:10.1186/1475-2859-13-66.
36.Zhang, J. H., Huang, J., Hussain, S., Zhu, L. F., Cao, X. C., Zhu, C. Q., Jin, Q. Y., & Zhang, H. (2021). Increased ammonification, nitrogenase, soil respiration and microbial biomass N in the rhizosphere of rice plants inoculated with rhizobacteria. Journal of Integrative Agriculture, 20 (10), 2781-2796. doi. org/10.1016/S2095-3119(20)63454-2.
37.Thiep, N. V., Soytong, K., Thi Kim Oanh, N., Huy Quang, P., & Hai Yen, P. (2019). Reserch and development of enzymatic producing fungi as biofertilizer for tea and arabica coffee production in Northern Vietna. International Journal of Agricultural Technology, 15 (5), 797-806. http://www.ijat-aatsea.
38.Lifeng, M., Xiangde, Y., Yuanzhi, S., Xiaoyun, Y., Lingfei, J., Yi, Ch., Kang, N., & Jianyun, R. (2021). Response of tea yield, quality and soil bacterial characteristics to long-term nitrogen fertilization in an eleven-year field experiment. Soil Ecology, 166, 1-11. doi.org/10.1016/j.apsoil.2021.103976.
39.Enjavi, F., Taghvaei, M., Sadeghei, H., & Hassanli, H. (2015). Effects of superabsorbent polymer on early vigor and water use efficiency of (Calotropis procera L.) seedlings under drought stress. Iranian Journal of Range and Desert Research, 22 (2), 216-230. doi: org/10.22092/ijrdr.2015.101641.
40.Dhar Purkayastha, G., Mangar, P., Saha, A., & Saha, D. (2018). Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS ONE,
13 (2), e0191761. doi: 10.1371/ journal.pone.0191761.
41.Chakraborty, U., Chakraborty, B. N., Chakraborty, A. P., Sunar, K., & Dey, P. L. (2013). Plant growth promoting rhizobacteria mediated improvement of health status of tea plants. Indian Journal of Biotechnology, 12, 20-31. WOS:000318531500003.
42.Sharma, A. K. (2003). Biofertilizers for Sustainable Agriculture. Agrobios. India. 407p.
43.Chinnusamy, V., Schumaker, K., & Zhu, J. K. (2004). Molecular genetics perspectives on cross-talk and specificity in abiotic stress signaling in plants. Journal of Experimental Botany, 55, 225-236. doi: 10.1093/jxb/erh005.
44.Nadjafi, F. (2002). Effect of irrigation intervals and plant density on quantity and quality of Isubgol (Plantago ovate Forsk). M.Sc. Thesis. 5, 45-52.
45.
Marques, J. M.,
Mateus, J. R.,
da Silva, T. F.,
de Almeida Couto, C. R.,
Blank, A. F., &
Seldin, L. (2019). Nitrogen fixing and phosphate mineralizing bacterial communities in sweet potato rhizosphere show a genotype-dependent distribution.
Diversity, 11 (12), 231.
doi: org/10.3390/d11120231.
46.Panda, P., Choudhury, A., Chakraborty, S., Ray, D. P., Deb, S., Patra, P. S., Mahato, B., Paramanik, B., Singh, A. K., & Chauhan, R. K. (2017). Phosphorus solubilizing bacteria from tea soils and their phosphate solubilizing abilities. International Journal of Bioresource Science, 4 (2), 113-125. doi:10.5958/ 2454-9541.2017.00018.4.