اثر کشت مخلوط سویا و بادرشبویه برکارایی جذب عناصر غذایی ضروری تحت سیستم کوددهی آلی و غیرآلی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه زراعت- دانشگاه شهزکرد

2 عضو هیات علمی دانشکده کشاورزی، دانشگاه شهرکرد

3 عضو هیأت علمی دانشگاه شهرکرد

چکیده

سابقه و هدف: کشت مخلوط رشد دو یا چند گیاه به طور همزمان در یک مکان است و به عنوان روشی پایدارتر برای افزایش محصول در مقایسه با کشت خالص مطرح است. سیستم ریشه‌ای گسترده و توزیع یافته و نیز معماری کارآمدتر آن در کشت مخلوط، ممکن است جذب و کارایی عناصر افزایش دهد. از سوی دیگر کاربرد کودهای آلی آلودگی‌های محیطی را کاهش می‌دهد و منجر به بازچرخش طولانی‌تر عناصر در سیستم‎های کشاورزی می‌شود. باتوجه به این موضوع، این مطالعه با هدف ارزیابی کارایی عناصرکشت مخلوط سویا- بادرشبویه تحت تغذیه کود دامی و کود شیمیایی اجرا شد.
مواد و روش‌ها: آزمایشی بصورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در مزرعه تحقیقاتی دانشکده کشاورزی شهرکرد در سال ۱۳۹۵ اجرا شد. پنج الگوی کشت شامل کشت خالص سویا، کشت خالص بادرشبویه و سه نسبت مخلوط این دو گیاه (۱:۱، ۲:۱ و ۱:۲) به عنوان فاکتور اول در دو منبع کودی (کودهای شیمیایی و کود مرغی) به عنوان فاکتور دوم ارزیابی شد. گیاه بادرشبویه و سویا به ترتیب در مرحله گلدهی و در مرحله رسیدگی برداشت شدند. غلظت عنصر نیتروژن، فسفر، پتاسیم، مس، آهن، روی و منگنز تعیین گردید. سپس جذب هر عنصر از حالضرب غلظت عنصر در عملکرد محصول محاسبه شد. عملکرد نسبی محصول و عملکرد نسبی عناصر در کشت مخلوط محاسبه شد. تجزیه واریانس داده های بدست آمده با استفاده از نرم افزار SAS انجام شد و مقایسه میانگین‎ها با آزمون LSD در سطح احتمال 5 درصد انجام شد.
یافته‌ها: نتایج نشان داد بیشترین جذب نیتروژن (59/10 گرم در متر مربع) و فسفر (79/1 گرم در متر مربع) به ترتیب در کشت خالص سویا و کشت خالص بادرشبویه تیمار شده با کود آلی بدست آمد که با نسبت مخلوط سویا: بادرشبویه (1:1) تفاوت معنی‎داری نداشت. بیشترین جذب پتاسیم، آهن، روی و منگنز به ترتیب با14، 253/0، 065/0 و 080/0 گرم در متر مربع در کشت خالص بادرشبویه تیمار شده با کود آلی بدست آمد. در حالی که برای مس بیشترین جذب (0135/0 گرم در متر مربع) در کشت خالص بادرشبویه حاوی کود آلی حاصل شد که با تیمار سویا: بادرشبویه (1:2) حاوی کود آلی اختلاف معنی‌داری نشان نداد. بیشترین عملکرد نسبی نیتروژن (04/1)، فسفر (09/1)، آهن (03/1) در سویا: بادرشبویه (1:1) تحت تغذیه کود آلی بدست آمد. بیشترین عملکرد نسبی پتاسیم (07/1)، مس (32/1)، منگنز (03/1) در تیمار سویا: بادرشبویه (1:2) تحت تغذیه کود آلی مشاهده شد. در این آزمایش، کود آلی از لحاظ جذب عناصر برتری معنی‎داری نسبت به کود شیمیایی داشت. علاوه بر این، کارایی جذب عناصر در الگوهای کشت مخلوط بالاتر از کشت خالص بود.
نتیجه‌گیری: الگوهای کشت مخلوط به ویژه در شرایط کاربرد کود دامی، کارایی عناصر را افزایش می‌دهد. بنابراین افزایش کارایی جذب، نیاز به مصرف کودها در مزعه کاهش می‌دهد که علاوه بر آسیب‌های زیست محیطی کمتر، در افزایش بهره‎وری اقتصادی نیز سهیم می‎باشد

کلیدواژه‌ها


عنوان مقاله [English]

Effects of intercropping of soybean with dragonhead on main nutrient efficiency nourished with organic and inorganic resources

نویسندگان [English]

  • Maryam Rostaei 1
  • Sina Fallah 2
  • Ali Abbasi Surki 3
1 Shahrekord University
2 Shahrekord University
3 Shahrekord university
چکیده [English]

Background and Objectives: Intercropping defined as growing two or more crops simultaneously in the same field, considering for its more sustainability and higher yields compared to sole-cropping. More developed and distributed root systems besides efficient architecture may enhance uptake and efficiency of nutrients. Application of organic fertilizers, on the other hand reduces environmental pollution and lead to longer nutrients recycling in agricultural systems. Considering these issues, this study aimed to evaluate nutrient efficiency of dragonhead - soybean intercropping nourished with organic manure and chemical fertilizer.

Material and methods: A RCBD factorial experiment with three replications was conducted at Shahrekord University research farm in 2016. Five sowing patterns include: Sole-cropping of soybean (S), sole cropping of dragonhead (D) and three intercropping ratios of them (S:D 2:1, 1:1, and 1:2) as first factor were evaluated at two fertilization sources (chemical fertilizer and broiler litter) as second factor. Dragonhead and soybean were harvested at flowering and maturity stages, respectively. Concentration of nitrogen, phosphorus, potassium, copper, iron, zinc and manganese were determined for each plot. Finally, uptake of nutrients was calculated by multiplying the concentration by yield. The relative crop yield and relative nutrients yield in intercropping were calculated. The analysis of variance for the obtained data was done by statistical analysis system (SAS V.9) software. The mean comparison was done using the least significant difference (LSD) test at the 5% probability level.
Results: The result showed that the maximum uptake of nitrogen (10.59 g.m-2) and phosphorus (1.79 g.m-2) were obtained in sole cropped soybean and dragonhead treated with organic manure, did not show significant difference with intercropped ratio of soybean: dragonhead (1:1). The highest uptake of potassium (14 g.m-2), iron (0.253 g.m-2), zinc (0.065 g.m-2) and manganese (0.080 g.m-2) were achieved in sole cropped dragonhead treated with organic manure too. While for copper the highest ones (0.0135 g.m-2) were obtained in sole cropped dragonhead under organic manure, showing no significant difference with soybean: dragonhead (1:2) ratio under organic manure. The highest relative yield of nitrogen (1.04), phosphorus (1.09) and iron (1.03) was obtained in soybean: dragonhead (1:1) under organic manure. The greatest relative yield of potassium (1.07), copper (1.32) and manganese (1.03) was observed in soybean: dragonhead (1:2) under organic manure.
In this study, organic manure showed significant gains in terms of nutrient uptake compared to chemical fertilizer. In addition to, uptake efficiency of nutrient was higher compared with sole cropping.
Conclusion: Intercropped patterns especially for organic manure application enhances nutrient efficiency. So, enhancement of uptake efficiency reduces the need for fertilizers in farm, in addition to lower environmental hazards contributes to increasing economic efficiency.

کلیدواژه‌ها [English]

  • Cropping pattern
  • Phosphorus
  • Uptake efficiency
  • Micronutrient
  • Nitrogen
1.Abdraimova, N.A., Umbetov, A.K., Yeleshev, R.E., and Goos, R.J. 2014. Effect of mineral and organic fertilizers on the soybean (Glycine max) yield and fertility of the irrigated soils. Life Science J. 11 :11. 256-261.
2.Adeli, A., Sistani, K.R., Rowe, D.E., and Tewolde, H. 2005. Effects of broiler litter on soybean production and soil nitrogen and phosphorus concentrations. Agron. J. 97: 1. 314-321.
3.Ahmadian, A., Ghanbari, A., Siahsar, B., Haydari, M., Ramroodi, M., and Mousavinik, S.M. 2011. Study of chamomiles yield and its components under drought stress and organic and inorganic fertilizers usage and their residue. J.Microbiol. Antimicrobial.
3: 2. 23-28.
4.Akanni, D.I., and Ojeniyi, S.O. 2007. Effect of different levels of poultry manure on soil physical properties, nutrients status, growth and yield of tomato (Lycopersicon esculentum). Res. J. Agron. 1: 1. 1-4.
5.Allen, J.R., and Ebura, P.K. 1983. Yield of corn, cowpea and soybean under different intercropping systems. Agron. J. 75: 6. 1005-1009.
6.Askegaard, M., and Eriksen, J. 2007. Growth of legume and nonlegume catch crops and residual‐N effects in spring barley on coarse sand. J. Plant Nutr. Soil Sci. 170: 6. 773-780.
7.Badalzadeh, A., Rafieiolhossaini, M., Abdolrazzagh Danesh Shahraki, A.R., and Ghobadinia, M. 2016. The effect of water deficit and different levels of cattle manure, chemical fertilizers and their combination on yield and some agro-morphological characteristics of Moldavian balm medicinal plant. Agricultural Crop Management. 18: 1. 141-156. (In Persian)
8.Bargaz, A., Isaac, M.E., Jensen, E.S., and Carlsson, G. 2015. Intercropping of faba bean with wheat under low water availability promotes faba bean nodulation and root growth in deeper soil layers. Procedia Environmental Sciences. 29: 111-112.
9.Caliskan, S., Ozakaya, I., Caliskan, M.E., and Arslan, M. 2008. The effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean type soil. Field Crop Research. 108: 2. 126-132.
10.Carof, M. 2006. Fonctionnement de peuplements en semis direct associant du ble tendre dhiver (Triticum aestivum L.) a differents plantes de couverture en climat tempere. INAPG (AgroParisTech). PhD thesis. Institut National Agronomique ParisñGrignon Ecole doctorale ABIES. 115p.
11.Chowdhury, M.K., and Rosario, E.L. 1994. Comparison of nitrogen, phosphorus and potassium utilization efficiency in maize mungbean intercropping. J. Agric. Sci.
122: 2. 193-199.
12.Darzi, M.T., and Haj Seyed Hadi, M.R. 2016. The role of separated and integrated application of organic and biological inputs on n, p and k concentration, essential oil of dragonhead (Dracocephalum moldavica L.). J. Agric. Sci. Sust. Prod. 26: 3. 101-114. (In Persian)
13.Dastmalchi, K., Dorman, H.G., Kosar, M., and Hiltunen, R. 2007. Chemical composition and in vitro antioxidant evaluation of a water soluble Moldavian balm (Dracocephalum moldavica L.) extract. LWT-Food Science and Technology. 40: 2. 239-248.
14.Eskanderi, H., and Ghanbari, A. 2011. Evaluation of competition and complementarity of corn (Zea mays) and cowpea (Vigna sinensis) intercropping for nutrient consumption. J. Agric. Sci. Sust. Prod. 21: 2. 67-75.
15.Fageria, N.K. 2009. The Use of Nutrients in Crop Plants. CRC Press, Taylor & Francis Group, Boca Raton, Fl. USA. 448p.
16.Fustec, J., Lesuffleur, F., Mahieu, S.,
and Cliquet, J.B. 2010. Nitrogen rhizodeposition of legumes. A review. Agronomy for Sustainable Development. 30: 1. 57-66.
17.Ghosh, P.K., Tripathi, A.K., Bandyopadhyay, K.K., and Manna, M.C. 2009. Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. Europ. J. Agron. 31: 1. 43-50.
18.Gunes, A., Inal, A., Adak, M.S., Alpaslan, M., Bagci, E.G., Erol, T., and Pilbeam, D.J. 2007. Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture. Nutrient Cycling in Agroecosystems. 78: 1. 83-96.‏
19.Hauggaard-Nielsen, H., Jornsgaard, B., Kinane J., Jensen, E.S. 2008. Grain legume-cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. Renewable Agriculture and Food Systems. 23: 1. 3-12.
20.Hauggaard-Nielsen, H., and Jensen, E.S. 2005. Facilitative root interactions in intercrops. Plant and Soil. 274: 237-250.
21.Hinsinger, P., Bengough, A.G., Vetterlein, D., and Young, I.M. 2009. Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and Soil.
321: 1-2. 117-152.
22.Inal, A., and Gunes, A. 2008. Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between mixed grown peanut/maize and peanut/barley in original saline-sodic-boron toxic soil.
J. Plant Physiol. 165: 5. 490-503.
23.Latati, M., Bargaz, A., Belarbi, B., Lazali, M., Benlahrech, S., Tellah, S., Kaci, G., and Ounane, S.M. 2016. The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Europ. J. Agron. 72: 80-90.
24.Latati, M., Blavet, D., Alkama, N., Laoufi, H., Drevon, J.J., Gerard, F., Pansu, M., and Ounane, S.M. 2014. The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil. Plant and Soil. 385: 1-2. 181-191.
25.Li, H., Shen, J., Zhang, F., Clairotte, M., Drevon, J.J., Le, Cadre, E., and Hinsinger, P. 2008. Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems. Plant and Soil. 312: 139-150.
26.Li, L., Tilman, D., Lambers, H., and Zhang, F.S. 2014. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New phytologist. 203: 1. 63-69.
27.Lithourgidis, A.S., Vlachostergios, D.N., Dordas, C.A., and Damalas, C.A. 2011. Dry matter yield, nitrogen content and competition in pea-cereal intercropping system. Europ. J. Agron. 34: 4. 287-294.
28.Marschner, H. 2012. Mineral nutrition of higher plants. Third ed. Academic Press, USA. 649p.
29.Martínez-Vázquez, M., Estrada-Reyes, R., Martínez Laurrabaquio A.,
López-Rubalcava, C., and Heinze, G. 2012. Neuropharmacological study of Dracocephalum moldavica L. (Lamiaceae) in mice: Sedative effect and chemical analysis of an aqueous extract.
J. Ethnopharmacol. 141: 3. 908-917.
30.Najafi, N., and Mostafae, M. 2015. Improvement of corn plant nutrition by farmyard manure application and intercropping with bean and bitter vetch in a calcareous soil. J. Soil Manage. Sust. Prod. 5: 1. 1-22. (In Persian)
31.Ofori, F., and Stern, W.R. 1987.
Cereal-legume intercropping system. In Advances in Agronomy. 41: 41-90.
32.Ouda, B.A., and Mahadeen, A.Y.
2008. Effect of fertilizers on growth, yield, yield components, quality and certain nutrient contents in broccoli (Brassica oleracea). Inter. J. Agric. Biol. 10: 6. 627-632.
33.Pakgohar, N., and Ghanbari, A. 2014. Evaluation of competition and nutrient consumption of nitrified millet and green pea in intercropping. Agricultural Crop Management. 15: 4. 137-150.
(In Persian)
34.Pandey, V., Patel, A., and Patra, D.D. 2016. Integrated nutrient regimes ameliorate crop productivity, nutritive value, antioxidant activity and volatiles in basil (Ocimum basilicum L.). Industrial Crops and Products. 87: 124-131.
35.Pasban, F., Balouchi, H.R., Alireza Yadavi, A.R., Salehi, A., and Attarzadeh, M. 2015. The role organic and biological fertilizers in qualitative and quantitative yield of soybean (Glycine max L.) cv williams. J. Agric. Sci. Sust. Prod. 25: 3. 137-149.
(In Persian)
36.Penney, D. 2004. Micronutrients, agriculture, food and rural development, Alberta Government. http://wwwl.agric.gov.ab.ca/ $department/deptdocs.nsf/all/aesa1851?opendocument.
37.Rostaei, M. 2014. Effect of solitary and combined application of chemical fertilizers and poultry manure on various production aspects of fenugreek and black cumin in intercropping. M.Sc. Thesis, of Agronomy, Shahrekord University, 170p. (In Persian) 
38.Rostaei, M., and Fallah, S. 2015a. Effects of chemical fertilizers and organic manure, and their combinations on micronutrient concentration and uptake of fenugreek-black cumin under different planting patterns. J. Agroecol. 5: 1. 84-101. (In Persian)
39.Rostaei, M., and Fallah, S. 2015b. Effects of fertilizer source and intercropping ratios on fenugreek
and black cumin: Macronutrients concentration and uptake. J. Soil Manage. Sust. Prod. 5: 1. 43-60.
(In Persian)
40.Schlegel, A.J., Assefa, Y., Bond, H.D., Wetter, S.M., and Stone, L.R. 2015a. Soil physicochemical properties after 10 years of animal waste application. Soil Sci. Soc. Amer. J. 79: 3. 711-719.
41.Schlegel, A.J., Assefa, Y., Bond, H.D., Wetter, S.M., and Stone, L.R. 2015b. Corn response to long-term applications of cattle manure, swine effluent, and inorganic nitrogen fertilizer. Agron. J. 107: 5. 1701-1710.
42.Singh, K., Chand, S., and Yaseen, M. 2014. Integrated nutrient management in Indian basil (Ocimum basilicum). Industrial Crops and Products. 55: 225-229.
43.Thompson, D.C., Clarke, B.B., and. Heckman, J.R. 1995. Nitrogen form and rate of nitrogen and chloride applications for the control of summer patch in Kentucky bluegrass. Plant Disease. 79: 51-55.
44.Toor, G.S. 2009. Enhancing phosphorus availability in low-phosphorus soils by using poultry manure and commercial fertilizer. Soil Science. 174: 6. 358-364.
45.Yadav, R.D., Keshwa, G.L., and Yadva, S.S. 2002. Effect of integrated use of FYM, urea and sulphur on growth and yield of isabgol (Plantago ovata). J. Med. Arom. Plant Sci. 25: 668-671.
46.Zheng, Y., Zhang, F., and Li, L. 2003. Iron availability as affected by soil moisture in intercropped peanut and maize. J. Plant Nutr. 26: 12. 2425-2437.
47.Zuo, Y., Li, X., Cao, Y., Zhang, F., and Christie, P. 2003. Iron nutrition of peanut enhanced by mixed cropping with maize: possible role of root morphology and rhizosphere microflora. J. Plant Nutr. 26: 10-11. 2093-2110.